Hitting k Primes By Dice Rolls

dc.contributor.authorALON, NOGA
dc.contributor.authorMalinovsky, Yaakov
dc.contributor.authorMARTINEZ, LUCY
dc.contributor.authorZEILBERGER, DORON
dc.date.accessioned2025-01-31T18:24:02Z
dc.date.available2025-07-25
dc.description.abstractLet S = (d₁, d₂, d₃, . . .) be an infinite sequence of rolls of independent fair dice. For an integer k ⩾ 1, let Lₖ = Lₖ(S) be the smallest i so that there are k integers j ⩽ i for which ∑ʲ ₜ₌₁ dₜ is a prime. Therefore, Lₖ is the random variable whose value is the number of dice rolls required until the accumulated sum equals a prime k times. It is known that the expected value of L1 is close to 2.43. Here we show that for large k, the expected value of Lₖ is (1 + o(1))k logₑ k, where the o(1)-term tends to zero as k tends to infinity. We also include some computational results about the distribution of Lₖ for k ⩽ 100.
dc.description.urihttps://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/primesk.html
dc.format.extent11 pages
dc.genrejournal articles
dc.genrepostprints
dc.identifierdoi:10.13016/m2r4j0-wjmm
dc.identifier.urihttp://hdl.handle.net/11603/37540
dc.language.isoen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Mathematics and Statistics Department
dc.relation.ispartofUMBC Faculty Collection
dc.rightsAttribution-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nd/4.0/
dc.titleHitting k Primes By Dice Rolls
dc.title.alternativeHITTING THE PRIMES FOR THE k-TH TIME TAKES k log(k) DICE ROLLS (ON AVERAGE)
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0003-2888-674X

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
primeskEJC.pdf
Size:
461.85 KB
Format:
Adobe Portable Document Format