Myeloid-Derived Suppressor Cell Survival and Function Are Regulated by the Transcription Factor Nrf2

dc.contributor.authorBeury, Daniel W.
dc.contributor.authorCarter, Kayla A.
dc.contributor.authorNelson, Cassandra
dc.contributor.authorSinha, Pratima
dc.contributor.authorHanson, Erica
dc.contributor.authorNyandjo, Maeva
dc.contributor.authorFitzgerald, Phillip J.
dc.contributor.authorMajeed, Amry
dc.contributor.authorWali, Neha
dc.contributor.authorOstrand-Rosenberg, Suzanne
dc.date.accessioned2019-03-04T15:40:49Z
dc.date.available2019-03-04T15:40:49Z
dc.date.issued2016-04-15
dc.description.abstractTumor-induced myeloid-derived suppressor cells (MDSC) contribute to immune suppression in tumor-bearing individuals and are a major obstacle to effective immunotherapy. Reactive oxygen species (ROS) are one of the mechanisms used by MDSC to suppress T cell activation. Although ROS are toxic to most cells, MDSC survive despite their elevated content and release of ROS. Nuclear factor erythroid derived 2-like 2 (Nrf2) is a transcription factor that regulates a battery of genes which attenuates oxidative stress. Therefore, we hypothesized that MDSC resistance to ROS may be regulated by Nrf2. To test this hypothesis, we utilized Nrf2⁺/⁺ and Nrf2⁻/⁻ BALB/c and C57BL/6 mice bearing 4T1 mammary carcinoma and MC38 colon carcinoma, respectively. Nrf2 enhanced MDSC suppressive activity by increasing MDSC production of H₂O₂, and increased the quantity of tumor-infiltrating MDSC by reducing their oxidative stress and rate of apoptosis. Nrf2 did not affect circulating levels of MDSC in tumor-bearing mice since the decreased apoptotic rate of tumor-infiltrating MDSC was balanced by a decreased rate of differentiation from bone marrow progenitor cells. These results demonstrate that Nrf2 regulates the generation, survival and suppressive potency of MDSC, and that a feedback homeostatic mechanism maintains a steady-state level of circulating MDSC in tumor-bearing individuals.en_US
dc.description.sponsorshipWe thank Drs. Masayuki Yamamoto (Tohoku University Graduate School of Medicine) and Shyam Biswal (Johns Hopkins) for kindly providing breeding pairs of the BALB/c Nrf2⁺/⁻ and C57BL/6 Nrf2⁻/⁻ mice, respectively, Dr. Tiha Long for qRT-PCR primer design, and Dr. Anil Jaiswal (University of Maryland, Baltimore) for helpful discussions.en_US
dc.description.urihttp://www.jimmunol.org/content/196/8/3470.longen_US
dc.format.extent10 pagesen_US
dc.genrejournal articlesen_US
dc.identifierdoi:10.13016/m2g1jb-nxbq
dc.identifier.citationDaniel W. Beury, Kayla A. Carter, Cassandra Nelson, Pratima Sinha, Erica Hanson, Maeva Nyandjo, Phillip J. Fitzgerald, Amry Majeed, Neha Wali and Suzanne Ostrand-Rosenberg, Myeloid-Derived Suppressor Cell Survival and Function Are Regulated by the Transcription Factor Nrf2, J Immunol April 15, 2016, 196 (8) 3470-3478, DOI: https://doi.org/10.4049/jimmunol.1501785en_US
dc.identifier.urihttps://doi.org/10.4049/jimmunol.1501785
dc.identifier.urihttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4821672/
dc.identifier.urihttp://hdl.handle.net/11603/12906
dc.language.isoen_USen_US
dc.publisherThe American Association of Immunologistsen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Biological Sciences Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.subjectTumor immunity,en_US
dc.subjecttoleranceen_US
dc.subjectsuppressionen_US
dc.subjectanergyen_US
dc.subjectT cellsen_US
dc.titleMyeloid-Derived Suppressor Cell Survival and Function Are Regulated by the Transcription Factor Nrf2en_US
dc.typeTexten_US

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: