A multi-wavelength study of the 2025 low state of the intermediate polar BG CMi

Department

Program

Citation of Original Publication

Rights

Attribution 4.0 International

Abstract

We present multi-wavelength observations of the first recorded low state of the intermediate polar BG CMi. Optical monitoring of the source by members of the American Association of Variable Star Observers reveals a decrease of ~0.5 mag that lasted ~50 d in early 2025. During the low state the optical timing properties imply that BG CMi underwent a change in the accretion mode, as power at the spin frequency ω dramatically dropped. An XMM-Newton observation revealed a substantial decrease in intrinsic absorption and a slight increase in intrinsic X-ray luminosity, compared to archival Suzaku data. Timing analysis of the X-ray light curves shows that power shifted from the orbital frequency Ω (prominent in Suzaku data) to 2Ω in the low state XMM-Newton data, along with the strengthening of certain orbital sidebands. We suggest that BG CMi transitioned to disk-overflow accretion, where the white dwarf accreted matter via both a disk and a stream, the latter becoming more dominant during the low state due to a decrease in the mass and size of the disk.