GRB 221009A: the B.O.A.T Burst that Shines in Gamma Rays
Date
Type of Work
Department
Program
Citation of Original Publication
Axelsson, M., M. Ajello, M. Arimoto, et al. “GRB 221009A: The B.O.A.T. Burst That Shines in Gamma Rays.” The Astrophysical Journal Supplement Series 277, no. 1 (2025): 24. https://doi.org/10.3847/1538-4365/ada272.
Rights
This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
Public Domain
Public Domain
Abstract
We present a complete analysis of Fermi Large Area Telescope (LAT) data of GRB 221009A, the brightest gamma-ray burst (GRB) ever detected. The burst emission above 30 MeV detected by the LAT preceded, by 1 s, the low-energy (<10 MeV) pulse that triggered the Fermi Gamma-Ray Burst Monitor (GBM), as has been observed in other GRBs. The prompt phase of GRB 221009A lasted a few hundred seconds. It was so bright that we identify a bad time interval of 64 s caused by the extremely high flux of hard X-rays and soft gamma rays, during which the event reconstruction efficiency was poor and the dead time fraction quite high. The late-time emission decayed as a power law, but the extrapolation of the late-time emission during the first 450 s suggests that the afterglow started during the prompt emission. We also found that high-energy events observed by the LAT are incompatible with synchrotron origin, and, during the prompt emission, are more likely related to an extra component identified as synchrotron self-Compton (SSC). A remarkable 400 GeV photon, detected by the LAT 33 ks after the GBM trigger and directionally consistent with the location of GRB 221009A, is hard to explain as a product of SSC or TeV electromagnetic cascades, and the process responsible for its origin is uncertain. Because of its proximity and energetic nature, GRB 221009A is an extremely rare event.