Multi-Objective Optimal Design of a Cable-Driven Parallel Robot Based on an Adaptive Adjustment Inertia Weight Particle Swarm Optimization Algorithm

dc.contributor.authorZhou, Bin
dc.contributor.authorLi, Sipan
dc.contributor.authorZi, Bin
dc.contributor.authorChen, Bing
dc.contributor.authorZhu, Weidong
dc.date.accessioned2023-05-25T19:50:15Z
dc.date.available2023-05-25T19:50:15Z
dc.date.issued2023-05-22
dc.description.abstractCable-driven parallel robots (CDPRs) have been widely used in engineering fields because of their significant advantages including high load-bearing capacity, large workspace, and low inertia. However, the impact of convergence speed and solution accuracy of optimization approaches on optimal performances can become a key issue when it comes to the optimal design of CDPR applied to large storage space. An adaptive adjustment inertia weight particle swarm optimization (AAIWPSO) algorithm is proposed for the multi-objective optimal design of CDPR. The kinematic and static models of CDPR are established based on the principle of virtual work. Subsequently, two performance indices including workspace and dexterity are derived. A multi-objective optimization model is established based on performance indices. The AAIWPSO algorithm introduces an adaptive adjustment inertia weight to improve the convergence efficiency and accuracy of traditional particle swarm optimization (PSO) algorithm. Numerical examples demonstrate that final convergence values of the objective function by the AAIWPSO algorithm can almost be 14∼20% and 19∼40% higher than those by the PSO algorithm and genetic algorithm (GA) for the optimal design of CDPR with different configurations and masses of end-effectors, respectively.en_US
dc.description.sponsorshipThis work was supported by the National Natural Science Foundation of China (Grant Nos. 52205258 and 51925502) and the Anhui Provincial Natural Science Foundation (Grant No. 2108085QE218).en_US
dc.description.urihttps://asmedigitalcollection.asme.org/mechanicaldesign/article/145/8/083301/1163212/Multi-Objective-Optimal-Design-of-a-Cable-Drivenen_US
dc.format.extent16 pagesen_US
dc.genrejournal articlesen_US
dc.identifierdoi:10.13016/m2vc2l-x4ii
dc.identifier.citationZhou, B., Li, S., Zi, B., Chen, B., and Zhu, W. (May 3, 2023). "Multi-objective optimal design of a cable-driven parallel robot based on an adaptive adjustment inertia weight PSO algorithm." ASME. J. Mech. Des. doi: https://doi.org/10.1115/1.4062458en_US
dc.identifier.urihttps://doi.org/10.1115/1.4062458
dc.identifier.urihttp://hdl.handle.net/11603/28086
dc.language.isoen_USen_US
dc.publisherASMEen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Mechanical Engineering Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.rightsCopyright © 2023 by ASME. Published by ASME. Commercial use only.en_US
dc.titleMulti-Objective Optimal Design of a Cable-Driven Parallel Robot Based on an Adaptive Adjustment Inertia Weight Particle Swarm Optimization Algorithmen_US
dc.typeTexten_US
dcterms.creatorhttps://orcid.org/0000-0003-2707-2533en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
md_145_8_083301.pdf
Size:
2.02 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: