Abstract Functional Stochastic Evolution Equations Driven by Fractional Brownian Motion

dc.contributor.authorMcKibben, Mark A.
dc.contributor.authorWebster, Micah
dc.contributor.departmentMathematicsen_US
dc.contributor.programCenter for Data, Mathematical, and Computational Sciencesen_US
dc.date.accessioned2017-07-27T00:01:03Z
dc.date.available2017-07-27T00:01:03Z
dc.date.issued2014-02-25
dc.description.abstractWe investigate a class of abstract functional stochastic evolution equations driven by a fractional Brownian motion in a real separable Hilbert space. Global existence results concerning mild solutions are formulated under various growth and compactness conditions. Continuous dependence estimates and convergence results are also established. Analysis of three stochastic partial differential equations, including a second-order stochastic evolution equation arising in the modeling of wave phenomena and a nonlinear diffusion equation, is provided to illustrate the applicability of the general theory.en_US
dc.format.extent14 pagesen_US
dc.genrejournal articlesen_US
dc.identifierdoi:10.13016/M2H12V74T
dc.identifier.citationM. McKibben, M. Webster, “Abstract Functional Stochastic Evolution Equations Driven by Fractional Brownian Motion,” Abstract and Applied Analysis, Vol 2014, Article ID 516853, 14 pages, 2014. doi:10.1155/2014/516853.en_US
dc.identifier.urihttp://hdl.handle.net/11603/4377
dc.language.isoen_USen_US
dc.titleAbstract Functional Stochastic Evolution Equations Driven by Fractional Brownian Motionen_US
dc.typeTexten_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.6 KB
Format:
Item-specific license agreed upon to submission
Description: