Sufficient conditions for strong discrete maximum principles in finite element solutions of linear and semilinear elliptic equations
| dc.contributor.author | Draganescu, Andrei | |
| dc.contributor.author | Scott, L. Ridgway | |
| dc.date.accessioned | 2025-10-22T19:58:12Z | |
| dc.date.issued | 2025-08-31 | |
| dc.description.abstract | We introduce a novel technique for proving global strong discrete maximum principles for finite element discretizations of linear and semilinear elliptic equations for cases when the common, matrix-based sufficient conditions are not satisfied. The basic argument consists of extending the strong form of discrete maximum principle from macroelements to the entire domain via a connectivity argument. The method is applied to discretizations of elliptic equations with certain pathological meshes, and to semilinear elliptic equations. | |
| dc.description.uri | http://arxiv.org/abs/2509.00932 | |
| dc.format.extent | 35 pages | |
| dc.genre | journal articles | |
| dc.genre | preprints | |
| dc.identifier | doi:10.13016/m2tcpw-ywoh | |
| dc.identifier.uri | https://doi.org/10.48550/arXiv.2509.00932 | |
| dc.identifier.uri | http://hdl.handle.net/11603/40554 | |
| dc.language.iso | en | |
| dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
| dc.relation.ispartof | UMBC Mathematics and Statistics Department | |
| dc.relation.ispartof | UMBC Faculty Collection | |
| dc.rights | Attribution 4.0 International | |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
| dc.subject | Computer Science - Numerical Analysis | |
| dc.subject | Mathematics - Numerical Analysis | |
| dc.title | Sufficient conditions for strong discrete maximum principles in finite element solutions of linear and semilinear elliptic equations | |
| dc.type | Text | |
| dcterms.creator | https://orcid.org/0009-0001-1425-8374 |
Files
Original bundle
1 - 1 of 1
