Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust
dc.contributor.author | Dubovik, Oleg | |
dc.contributor.author | Sinyuk, Alexander | |
dc.contributor.author | Lapyonok, Tatyana | |
dc.contributor.author | Holben, Brent N. | |
dc.contributor.author | Mishchenko, Michael | |
dc.contributor.author | Yang, Ping | |
dc.contributor.author | Eck, Thomas | |
dc.contributor.author | Volten, Hester | |
dc.contributor.author | Muñoz, Olga | |
dc.contributor.author | Veihelmann, Ben | |
dc.contributor.author | van der Zande, Wim J. | |
dc.contributor.author | Leon, Jean-Francois | |
dc.contributor.author | Sorokin, Michael | |
dc.contributor.author | Slutsker, Ilya | |
dc.date.accessioned | 2024-04-29T17:02:17Z | |
dc.date.available | 2024-04-29T17:02:17Z | |
dc.date.issued | 2006-06-15 | |
dc.description.abstract | The possibility of using shape mixtures of randomly oriented spheroids for modeling desert dust aerosol light scattering is discussed. For reducing calculation time, look-up tables were simulated for quadrature coefficients employed in the numerical integration of spheroid optical properties over size and shape. The calculations were done for 25 bins of the spheroid axis ratio ranging from ∼0.3 (flattened spheroids) to ∼3.0 (elongated spheroids) and for 41 narrow size bins covering the size parameter range from ∼0.012 to ∼625. The look-up tables were arranged into a software package, which allows fast, accurate, and flexible modeling of scattering by randomly oriented spheroids with different size and shape distributions. In order to evaluate spheroid model and explore the possibility of aerosol shape identification, the software tool has been integrated into inversion algorithms for retrieving detailed aerosol properties from laboratory or remote sensing polarimetric measurements of light scattering. The application of this retrieval technique to laboratory measurements by Volten et al. (2001) has shown that spheroids can closely reproduce mineral dust light scattering matrices. The spheroid model was utilized for retrievals of aerosol properties from atmospheric radiation measured by AERONET ground-based Sun/sky-radiometers. It is shown that mixtures of spheroids allow rather accurate fitting of measured spectral and angular dependencies of observed intensity and polarization. Moreover, it is shown that for aerosol mixtures with a significant fraction of coarse-mode particles (radii ≥ ∼1 μm), the nonsphericity of aerosol particles can be detected as part of AERONET retrievals. The retrieval results indicate that nonspherical particles with aspect ratios ∼1.5 and higher dominate in desert dust plumes, while in the case of background maritime aerosol spherical particles are dominant. Finally, the potential of using AERONET derived spheroid mixtures for modeling the effects of aerosol particle nonsphericity in other remote sensing techniques is discussed. For example, the variability of lidar measurements (extinction to backscattering ratio and signal depolarization ratio) is illustrated and analyzed. Also, some potentially important differences in the sensitivity of angular light scattering to parameters of nonspherical versus spherical aerosols are revealed and discussed. | |
dc.description.sponsorship | We thank the EOS Project Science Office for continued support. Michael Mishchenko acknowledges support from the NASA Radiation Sciences Program managed by Hal Maring and from the NASA Glory Mission project. We also thank the AERONET staff for the data collection, calibration and processing. Special thanks go to Jeff Reid, Joop Hovenier, Robert Fraser, and an anonymous reviewer for useful comments that have helped us to improve the paper. | |
dc.description.uri | https://onlinelibrary.wiley.com/doi/abs/10.1029/2005JD006619 | |
dc.format.extent | 34 pages | |
dc.genre | journal articles | |
dc.identifier | doi:10.13016/m26ime-mdy8 | |
dc.identifier.citation | Dubovik, Oleg, Alexander Sinyuk, Tatyana Lapyonok, Brent N. Holben, Michael Mishchenko, Ping Yang, Tom F. Eck, et al. “Application of Spheroid Models to Account for Aerosol Particle Nonsphericity in Remote Sensing of Desert Dust.” Journal of Geophysical Research: Atmospheres 111, no. D11 (2006). https://doi.org/10.1029/2005JD006619. | |
dc.identifier.uri | https://doi.org/10.1029/2005JD006619 | |
dc.identifier.uri | http://hdl.handle.net/11603/33512 | |
dc.language.iso | en_US | |
dc.publisher | AGU | |
dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
dc.relation.ispartof | UMBC GESTAR II | |
dc.relation.ispartof | UMBC Faculty collection | |
dc.rights | This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law. | |
dc.rights | Public Domain | |
dc.rights.uri | https://creativecommons.org/publicdomain/mark/1.0/ | |
dc.subject | remote sensing | |
dc.subject | retrieval | |
dc.subject | nonsphericity | |
dc.title | Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust | |
dc.type | Text | |
dcterms.creator | https://orcid.org/0000-0001-9801-1610 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Journal-of-Geophysical-Research-Atmospheres-2006-Dubovik-Application-of-spheroid-models-to-account-for-aerosol.pdf
- Size:
- 2.35 MB
- Format:
- Adobe Portable Document Format