Semi-Supervised Linear Spectral Unmixing Using a Hierarchical Bayesian Model for Hyperspectral Imagery

dc.contributor.authorDobigeon, Nicolas
dc.contributor.authorTourneret, Jean-Yves
dc.contributor.authorChang, Chein-I
dc.date.accessioned2024-05-29T14:38:14Z
dc.date.available2024-05-29T14:38:14Z
dc.date.issued2008-06-17
dc.description.abstractThis paper proposes a hierarchical Bayesian model that can be used for semi-supervised hyperspectral image unmixing. The model assumes that the pixel reflectances result from linear combinations of pure component spectra contaminated by an additive Gaussian noise. The abundance parameters appearing in this model satisfy positivity and additivity constraints. These constraints are naturally expressed in a Bayesian context by using appropriate abundance prior distributions. The posterior distributions of the unknown model parameters are then derived. A Gibbs sampler allows one to draw samples distributed according to the posteriors of interest and to estimate the unknown abundances. An extension of the algorithm is finally studied for mixtures with unknown numbers of spectral components belonging to a know library. The performance of the different unmixing strategies is evaluated via simulations conducted on synthetic and real data.
dc.description.urihttps://ieeexplore.ieee.org/document/4545260
dc.format.extent13 pages
dc.genrejournal articles
dc.genrepreprints
dc.identifierdoi:10.13016/m2armt-rywm
dc.identifier.citationDobigeon, Nicolas, Jean-Yves Tourneret, and Chein-I Chang. “Semi-Supervised Linear Spectral Unmixing Using a Hierarchical Bayesian Model for Hyperspectral Imagery.” IEEE Transactions on Signal Processing 56, no. 7 (17 June 2008): 2684–95. https://doi.org/10.1109/TSP.2008.917851.
dc.identifier.urihttps://doi.org/10.1109/TSP.2008.917851
dc.identifier.urihttp://hdl.handle.net/11603/34323
dc.language.isoen_US
dc.publisherIEEE
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department
dc.rights© 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
dc.subjectAdditive noise
dc.subjectBayesian methods
dc.subjectGaussian noise
dc.subjectGibbs sampler
dc.subjecthierarchical Bayesian analysis
dc.subjecthyperspectral images
dc.subjectHyperspectral imaging
dc.subjectHyperspectral sensors
dc.subjectImage analysis
dc.subjectLibraries
dc.subjectlinear spectral unmixing
dc.subjectMarkov chain Monte Carlo (MCMC) methods
dc.subjectMonte Carlo methods
dc.subjectreversible jumps
dc.subjectSignal processing
dc.subjectSignal processing algorithms
dc.titleSemi-Supervised Linear Spectral Unmixing Using a Hierarchical Bayesian Model for Hyperspectral Imagery
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0002-5450-4891

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
dobigeon_803.pdf
Size:
1.79 MB
Format:
Adobe Portable Document Format