Harmonized Emissions Component (HEMCO) 3.0 as a versatile emissions component for atmospheric models: application in the GEOS-Chem, NASA GEOS, WRF-GC, CESM2, NOAA GEFS-Aerosol, and NOAA UFS models

dc.contributor.authorLin, Haipeng
dc.contributor.authorJacob, Daniel J.
dc.contributor.authorLundgren, Elizabeth W.
dc.contributor.authorSulprizio, Melissa P.
dc.contributor.authorKeller, Christoph A.
dc.contributor.authorFritz, Thibaud M.
dc.contributor.authorEastham, Sebastian D.
dc.contributor.authorEmmons, Louisa K.
dc.contributor.authorCampbell, Patrick C.
dc.contributor.authorBaker, Barry
dc.contributor.authorSaylor, Rick D.
dc.contributor.authorMontuoro, Raffaele
dc.date.accessioned2021-05-24T21:28:20Z
dc.date.available2021-05-24T21:28:20Z
dc.date.issued2021-05-03
dc.description.abstractEmissions are a central component of atmospheric chemistry models. The Harmonized Emissions Component (HEMCO) is a software component for computing emissions from a user-selected ensemble of emission inventories and algorithms. While available in standalone mode, HEMCO also provides a general on-line facility for models to compute emissions at runtime. It allows users to re-grid, combine, overwrite, subset, and scale emissions from different inventories through a configuration file and with no change to the model source code. The configuration file also maps emissions to model species with appropriate units. HEMCO complies with the Earth System Modeling Framework (ESMF) for portability across models. We present here a new version HEMCO 3.0 that features an improved three-layer architecture to facilitate implementation into any atmospheric model, and improved capability for calculating emissions at any model resolution including multiscale and unstructured grids. The three-layer architecture of HEMCO 3.0 includes (1) a Data Input Layer that reads the configuration file and accesses the HEMCO library of emission inventories and other environmental data; (2) the HEMCO Core that computes emissions on the user-selected HEMCO grid; and (3) the Model Interface Layer that re-grids (if needed) and serves the data to the atmospheric model, and also serves model data to the HEMCO Core for computing emissions dependent on model state (such as from dust, vegetation, etc.). The HEMCO Core is common to the implementation in all models, while the Data Input Layer and the Model Interface Layer are adaptable to the model environment. Default versions of the Data Input Layer and Model Interface Layer enable straightforward implementation of HEMCO in any simple model architecture, and options are available to disable features such as re-gridding that may be done by independent couplers in more complex architectures. The HEMCO library of emission inventories and algorithms is continuously enriched through user contributions, so that new inventories can be immediately shared across models. HEMCO can also serve as a general data broker for models to process input data not only for emissions but for any gridded environmental datasets. We describe existing implementations of HEMCO 3.0 in (1) the GEOS-Chem “Classic” chemical transport model with shared-memory infrastructure, (2) the high-performance GEOS-Chem (GCHP) model with distributed-memory architecture, (3) the NASA GEOS Earth System Model (GEOS ESM), (4) the Weather Research and Forecasting model with GEOS-Chem (WRF-GC), (5) the Community Earth System Model Version 2 (CESM2), and (6) the NOAA Global Ensemble Forecast System – Aerosols (GEFS-Aerosols), and the planned implementation in the NOAA Unified Forecast System (UFS). Implementation of HEMCO in the CESM2 model contributes to the Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA) by providing a common emissions infrastructure to support different simulations of atmospheric chemistry across scales.en_US
dc.description.sponsorshipThis project was supported by the Atmospheric Chemistry Program of the US National Science Foundation and by the NASA Atmospheric Composition Modeling and Analysis Program. The CESM project is supported primarily by the National Science Foundation (NSF). This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the NSF under Cooperative Agreement No. 1852977. Computing and data storage resources, including the Cheyenne supercomputer (doi:10.5065/D6RX99HX), were provided by the Computational and Information Systems Laboratory (CISL) at NCAR. The authors would also like to thank Steve Goldhaber and Andrew Conley for useful discussions in designing and developing the HEMCO-CESM interface.en_US
dc.description.urihttps://gmd.copernicus.org/preprints/gmd-2021-130/en_US
dc.format.extent26 pagesen_US
dc.genrejournal articles preprintsen_US
dc.identifierdoi:10.13016/m2en7b-a9qy
dc.identifier.citationLin, Haipeng; Jacob, Daniel J.; Lundgren, Elizabeth W.; Sulprizio, Melissa P.; Keller, Christoph A.; Fritz, Thibaud M.; Eastham, Sebastian D.; Emmons, Louisa K.; Campbell, Patrick C.; Baker, Barry; Saylor, Rick D.; Montuoro, Raffaele; Harmonized Emissions Component (HEMCO) 3.0 as a versatile emissions component for atmospheric models: application in the GEOS-Chem, NASA GEOS, WRF-GC, CESM2, NOAA GEFS-Aerosol, and NOAA UFS models; Geoscientific Model Development (2021); https://gmd.copernicus.org/preprints/gmd-2021-130/en_US
dc.identifier.urihttps://doi.org/10.5194/gmd-2021-130
dc.identifier.urihttp://hdl.handle.net/11603/21613
dc.language.isoen_USen_US
dc.publisherEGU Publicationsen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Joint Center for Earth Systems Technology
dc.relation.ispartofUMBC Faculty Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.rightsAttribution 4.0 International (CC BY 4.0)*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.titleHarmonized Emissions Component (HEMCO) 3.0 as a versatile emissions component for atmospheric models: application in the GEOS-Chem, NASA GEOS, WRF-GC, CESM2, NOAA GEFS-Aerosol, and NOAA UFS modelsen_US
dc.typeTexten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gmd-2021-130.pdf
Size:
1.7 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: