Hyperbolic polynomials and majorization

dc.contributor.authorGowda, M. Seetharama
dc.date.accessioned2022-10-07T15:29:37Z
dc.date.available2022-10-07T15:29:37Z
dc.date.issued2021-10-14
dc.description.abstractOn a finite dimensional real vector space V, we consider a real homogeneous polynomial p of degree n that is hyperbolic relative to a vector e ∈ V. This means that p(e) 6= 0 and for any (fixed) x ∈ V, the roots of the one-variable polynomial t 7→ p(te − x) are all real. Let λ(x) denote the vector in Rn whose entries are these real roots written in the decreasing order. Relative to the map λ : V → Rn, we introduce and study automorphisms, majorization, and doubly stochastic transformationsen
dc.description.urihttp://www.math.umbc.edu/~gowda/tech-reports/PrGOW21-01.pdfen
dc.format.extent16 pagesen
dc.genretechnical reportsen
dc.genrepreprintsen
dc.identifierdoi:10.13016/m23lfu-vjdw
dc.identifier.urihttp://hdl.handle.net/11603/26116
dc.language.isoenen
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Mathematics Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.en
dc.titleHyperbolic polynomials and majorizationen
dc.typeTexten
dcterms.creatorhttps://orcid.org/0000-0001-5171-0924en

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PrGOW21-01.pdf
Size:
299.59 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: