Quality of Service Measure for Bike Sharing Systems
dc.contributor.author | Ashqar, Huthaifa | |
dc.contributor.author | Elhenawy, Mohammed | |
dc.contributor.author | Rakha, Hesham A. | |
dc.contributor.author | House, Leanna | |
dc.date.accessioned | 2022-10-21T14:10:44Z | |
dc.date.available | 2022-10-21T14:10:44Z | |
dc.date.issued | 2022-02-03 | |
dc.description.abstract | Bike sharing systems (BSSs) are becoming an important part of urban mobility in many cities given that they are sustainable and environmentally friendly. BSS operators spend great efforts to ensure bike and dock availability at each station. Measuring the quality of service (QoS) of each station and/or the entire system is critical for efficient system operations. The traditionally-known QoS measure reported in the literature is based on the proportion of problematic stations, which are defined as those with no bikes or docks available to users. This measure neither exposes the spatial dependencies between stations nor does it discriminate between stations in the BSS. Hence, we propose a novel QoS measure, namely the Optimal Occupancy, in which: 1) the temporal variations in arrival and pick up rates at individual stations are considered; 2) the discriminative property of the Optimal Occupancy is demonstrated using Analysis of Variance (ANOVA) procedures; and 3) geo-statistics, which have not been used before, are applied to explore the spatial Optimal Occupancy variations and model variograms for spatial prediction. This study uses an anonymized bike trip dataset from 34 stations in downtown San Francisco to compare the traditionally-known QoS measure and the proposed Optimal Occupancy measure. Results reveal that the Optimal Occupancy is beneficial, outperforms the traditionally-known QoS measure, and produces a better prediction of the QoS at nearby locations. In addition, the Optimal Occupancy can be used to predict candidate locations for the introduction of new stations in an existing BSS | en_US |
dc.description.sponsorship | This paper was submitted for review on xxxx. This effort was funded by the Urban Mobility and Equitable Center and the NSF UrbComp project | en_US |
dc.description.uri | https://ieeexplore.ieee.org/abstract/document/9703278 | en_US |
dc.format.extent | 11 pages | en_US |
dc.genre | journal articles | en_US |
dc.genre | preprints | en_US |
dc.identifier | doi:10.13016/m2ythl-npzt | |
dc.identifier.citation | H. I. Ashqar, M. Elhenawy, H. A. Rakha and L. House, "Quality of Service Measure for Bike Sharing Systems," in IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 9, pp. 15841-15849, Sept. 2022, doi: 10.1109/TITS.2022.3145669. | en_US |
dc.identifier.uri | https://doi.org/10.1109/TITS.2022.3145669 | |
dc.identifier.uri | http://hdl.handle.net/11603/26207 | |
dc.language.iso | en_US | en_US |
dc.publisher | IEEE | en_US |
dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
dc.relation.ispartof | UMBC Data Science Collection | |
dc.relation.ispartof | UMBC Faculty Collection | |
dc.rights | © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. | en_US |
dc.title | Quality of Service Measure for Bike Sharing Systems | en_US |
dc.type | Text | en_US |
dcterms.creator | https://orcid.org/0000-0002-6835-8338 | en_US |