Energy confinement and magnetic field generation in the SSPX spheromak

dc.contributor.authorHudson, B.
dc.contributor.authorWood, R. D.
dc.contributor.authorMcLean, H. S.
dc.contributor.authorHooper, E. B.
dc.contributor.authorHill, D. N.
dc.contributor.authorJayakumar, J.
dc.contributor.authorMoller, J.
dc.contributor.authorMontez, D.
dc.contributor.authorRomero-Talamás, Carlos
dc.contributor.authorCasper, T. A.
dc.contributor.authorJohnson III,J. A.
dc.contributor.authorLoDestro, L. L.
dc.contributor.authorMezonlin, E.
dc.contributor.authorPearlstein, L. D.
dc.date.accessioned2024-01-24T10:54:13Z
dc.date.available2024-01-24T10:54:13Z
dc.date.issued2008-03-28
dc.description.abstractThe Sustained Spheromak Physics Experiment (SSPX) [Hooper et al, Nuclear Fusion 39, 863 (1999)] explores the physics of efficient magnetic field buildup and energy confinement, both essential parts of advancing the spheromak concept. Extending the spheromak formation phase increases the efficiency of magnetic field generation with the maximum edge magnetic field for a given injector current (B/I⁠⁠) from 0.65T/MA previously to 0.9T/MA⁠. We have achieved the highest electron temperatures (Tₑ) recorded for a spheromak with Tₑ> 500 eV⁠, toroidal magnetic field ~ 1T⁠, and toroidal current (~1MA) [Wood et al, “Improved magnetic field generation efficiency and higher temperature spheromak plasmas,” Phys. Rev. Lett. (submitted)]. Extending the sustainment phase to >8ms extends the period of low magnetic fluctuations (<1%) by 50%. The NIMROD three-dimensional resistive magnetohydrodynamics code [Sovinec et al, Phys. Plasmas 10, 1727 (2003)] reproduces the observed flux amplification Ψpol/Ψgun⁠. Successive gun pulses are demonstrated to maintain the magnetic field in a quasisteady state against resistive decay. Initial measurements of neutral particle flux in multipulse operation show charge-exchange power loss <1% of gun input power and dominantly collisional majority ion heating. The evolution of electron temperature shows a distinct and robust feature of spheromak formation: A hollow-to-peaked Tₑ (r) associated with q ~ 1/2.
dc.description.sponsorshipPrepared by LLNL in part under Contract No. W-7450-Eng-48 and in part under Contract No. DE-AC52-07NA27344.
dc.description.urihttps://pubs.aip.org/aip/pop/article-abstract/15/5/056112/1015801/Energy-confinement-and-magnetic-field-generation?redirectedFrom=fulltext
dc.format.extent9 pages
dc.genrejournal articles
dc.identifier.citationB. Hudson, R. D. Wood, H. S. McLean, E. B. Hooper, D. N. Hill, J. Jayakumar, J. Moller, D. Montez, C. A. Romero-Talamás, T. A. Casper, J. A. Johnson, L. L. LoDestro, E. Mezonlin, L. D. Pearlstein; Energy confinement and magnetic field generation in the SSPX spheromak. Phys. Plasmas 1 May 2008; 15 (5): 056112. https://doi.org/10.1063/1.2890121
dc.identifier.urihttps://doi.org/10.1063/1.2890121
dc.identifier.urihttp://hdl.handle.net/11603/31463
dc.language.isoen_US
dc.publisherAIP
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Mechanical Engineering Department Collection
dc.rightsThis work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
dc.rightsPublic Domain Mark 1.0 en
dc.rights.urihttps://creativecommons.org/publicdomain/mark/1.0/
dc.titleEnergy confinement and magnetic field generation in the SSPX spheromak
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0002-6830-3126

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
056112_1_online.pdf
Size:
1.89 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: