Aerosols from anthropogenic and biogenic sources and their interactions – modeling aerosol formation, optical properties, and impacts over the central Amazon basin

dc.contributor.authorNascimento, Janaína P.
dc.contributor.authorBela, Megan M.
dc.contributor.authorMeller, Bruno B.
dc.contributor.authorBanducci, Alessandro L.
dc.contributor.authorRizzo, Luciana V.
dc.contributor.authorVara-Vela, Angel Liduvino
dc.contributor.authorBarbosa, H. M. J.
dc.contributor.authorGomes, Helber
dc.contributor.authorRafee, Sameh A. A.
dc.contributor.authorFranco, Marco A.
dc.contributor.authorCarbone, Samara
dc.contributor.authorCirino, Glauber G.
dc.contributor.authorSouza, Rodrigo A. F.
dc.contributor.authorMcKeen, Stuart A.
dc.contributor.authorArtaxo, Paulo
dc.date.accessioned2022-12-01T22:53:16Z
dc.date.available2022-12-01T22:53:16Z
dc.date.issued2021-05-05
dc.description.abstractThe Green Ocean Amazon experiment – GoAmazon 2014–2015 – explored the interactions between natural biogenic forest emissions from central Amazonia and urban air pollution from Manaus. Previous GoAmazon 2014–2015 studies showed that nitrogen oxide (NOx = NO + NO2) and sulfur oxide (SOx) emissions from Manaus strongly interact with biogenic volatile organic compounds (BVOCs), affecting secondary organic aerosol (SOA) formation. In previous studies, ground-based and aircraft measurements provided evidence of SOA formation and strong changes in aerosol composition and properties. Aerosol optical properties also evolve, and their impacts on the Amazonian ecosystem can be significant. As particles age, some processes, such as SOA production, black carbon (BC) deposition, particle growth and the BC lensing effect change the aerosol optical properties, affecting the solar radiation flux at the surface. This study analyzes data and models SOA formation using the Weather Research and Forecasting with Chemistry (WRF-Chem) model to assess the spatial variability in aerosol optical properties as the Manaus plumes interact with the natural atmosphere. The following aerosol optical properties are investigated: single scattering albedo (SSA), asymmetry parameter (gaer), absorption Ångström exponent (AAE) and scattering Ångström exponent (SAE). These simulations were validated using ground-based measurements at three experimental sites, namely the Amazon Tall Tower Observatory – ATTO (T0a), downtown Manaus (T1), Tiwa Hotel (T2) and Manacapuru (T3), as well as the U.S. Department of Energy (DOE) Gulfstream 1 (G-1) aircraft flights. WRF-Chem simulations were performed over 7 d during March 2014. Results show a mean biogenic SOA (BSOA) mass enrichment of 512 % at the T1 site, 450 % in regions downwind of Manaus, such as the T3 site, and 850 % in areas north of the T3 site in simulations with anthropogenic emissions. The SOA formation is rather fast, with about 80 % of the SOA mass produced in 3–4 h. Comparing the plume from simulations with and without anthropogenic emissions, SSA shows a downwind reduction of approximately 10 %, 11 % and 6 % at the T1, T2 and T3 sites, respectively. Other regions, such as those further downwind of the T3 site, are also affected. The gaer values increased from 0.62 to 0.74 at the T1 site and from 0.67 to 0.72 at the T3 site when anthropogenic emissions are active. During the Manaus plume-aging process, a plume tracking analysis shows an increase in SSA from 0.91 close to Manaus to 0.98 160 km downwind of Manaus as a result of SOA production and BC deposition.en_US
dc.description.sponsorshipWe acknowledge support from the central office of the Large-Scale Biosphere–Atmosphere Experiment in Amazonia (LBA), coordinated by the National Institute of Amazonian Research (INPA) and the Amazonas State University (UEA), Amazonas, Brazil. JPN thanks the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES) for a graduate fellowship, linked to the doctoral program in Climate and Environment (CLIAMB), and for supporting 7 months of a visiting graduate student program at the NOAA Earth System Research Laboratory. Janaína P. Nascimento also thanks the Institute of Physics of the University of São Paulo (IFUSP), for student mobility and logistical support, and CIRES and NOAA ESRL for financial and logistical support. We thank Michael Trainer for providing support and knowledge during the research. We thank Manish Shrivastava for providing WRF-Chem simulation output for comparison with this work. We thank Gilberto Fish for providing the planetary boundary layer observed data. We thank Steven Jefferts, Stefania Romisch and Samuel Brewer, for facilitating communication between members of this collaboration. We are grateful to Bruno Takeshi, Luiz Cândido, Renata Teixeira and Delano Campos, for instrument operation and data analysis. Finally, we thank Richard Tisinai, for IT support. Marco A. Franco acknowledges a scholarship from CNPq (grant no. 169842/2017-7), for supporting his doctoral studies at the IFUSP, São Paulo, Brazil, and CAPES (grant no. 88887.368025/2019-00), for supporting 6 months of a visiting graduate student program at the Max Planck Institute for Chemistry, Mainz, Germany. Bruno Meller acknowledges a scholarship from CNPq (grant no. 133393/2019-4), for supporting his Masters studies at the IFUSP, São Paulo, Brazil. Helber Gomes acknowledges funding from CAPES (grant no. 757/2017). Paulo Artaxo acknowledges funding from FAPESP (grant no. 2017/17047-0). This research has been supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (grant no. 2017/17047-0) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (grant nos. 88882.444345/2018-01 and 88881.190103/2018-01).en_US
dc.description.urihttps://acp.copernicus.org/articles/21/6755/2021/en_US
dc.format.extent25 pagesen_US
dc.genrejournal articlesen_US
dc.identifierdoi:10.13016/m2zczs-a9sw
dc.identifier.citationNascimento, J. P., Bela, M. M., Meller, B. B., Banducci, A. L., Rizzo, L. V., Vara-Vela, A. L., Barbosa, H. M. J., Gomes, H., Rafee, S. A. A., Franco, M. A., Carbone, S., Cirino, G. G., Souza, R. A. F., McKeen, S. A., and Artaxo, P.: Aerosols from anthropogenic and biogenic sources and their interactions – modeling aerosol formation, optical properties, and impacts over the central Amazon basin, Atmos. Chem. Phys., 21, 6755–6779, https://doi.org/10.5194/acp-21-6755-2021, 2021.en_US
dc.identifier.issnhttps://doi.org/10.5194/acp-21-6755-2021
dc.identifier.urihttp://hdl.handle.net/11603/26391
dc.language.isoen_USen_US
dc.publisherEGUen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Physics Department Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.titleAerosols from anthropogenic and biogenic sources and their interactions – modeling aerosol formation, optical properties, and impacts over the central Amazon basinen_US
dc.typeTexten_US
dcterms.creatorhttps://orcid.org/0000-0002-4027-1855en_US

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
acp-21-6755-2021.pdf
Size:
11.38 MB
Format:
Adobe Portable Document Format
Description:
Main Article
Loading...
Thumbnail Image
Name:
acp-21-6755-2021-supplement.pdf
Size:
7.51 MB
Format:
Adobe Portable Document Format
Description:
Additional file

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: