Road sign classification using deep learning

dc.contributor.authorAshour, Karim
dc.contributor.authorNafaa, Selvia
dc.contributor.authorEmad, Doaa
dc.contributor.authorMohamed, Rana
dc.contributor.authorEssam, Hafsa
dc.contributor.authorElhenawy, Mohammed
dc.contributor.authorAshqar, Huthaifa
dc.contributor.authorHassan, Abdallah A.
dc.contributor.authorGlaser, Sebastien
dc.contributor.authorRakotonirainy, Andry
dc.date.accessioned2024-10-28T14:31:17Z
dc.date.available2024-10-28T14:31:17Z
dc.date.issued2023-09
dc.description2023 Australasian Road Safety Conference, 19-21 September, Cairns, Queensland, Australia
dc.description.abstractRoad sign classification is essential for safety, especially with the development of autonomous vehicles and automated road asset management. Road sign classification is challenging because of several factors, including lighting, weather conditions, motion blur and car vibration. In this study, we developed an ensemble of fine-tuned pre-trained CCN networks. We used the German Traffic Sign Recognition Benchmark (GTSRB) to train and test the proposed ensemble. The proposed ensemble yielded a preliminary testing accuracy of 96.8%. Consequently, we customized the architecture of the worst-performing network in the ensemble, which boosted the accuracy to 99%.
dc.description.urihttps://trid.trb.org/View/2431347
dc.format.extent2 pages
dc.genreconference papers and proceedings
dc.identifierdoi:10.13016/m2qkcc-cebq
dc.identifier.citationAshour, Karim, Selvia Nafaa, Doaa Emad, Rana Mohamed, Hafsa Essam, Mohammed Elhenawy, Huthaifa I. Ashqar, Abdallah A. Hassan, Sebastien Glaser, and Andry Rakotonirainy. “Road Sign Classification Using Deep Learning,” in Australasian Road Safety Conference, 2023. September 2023. https://trid.trb.org/View/2431347.
dc.identifier.urihttps://doi.org/10.33492/ARSC-2023
dc.identifier.urihttp://hdl.handle.net/11603/36815
dc.language.isoen_US
dc.publisherNational Academy of Sciences
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Data Science
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.titleRoad sign classification using deep learning
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0002-6835-8338

Files