Extension of the Energy Range Accessible with a TES Using Bath Temperature Variations

dc.contributor.authorBeaumont, S.
dc.contributor.authorAdams, J.S.
dc.contributor.authorBandler, S. R.
dc.contributor.authorChervenak, J. A. 
dc.contributor.authorFinkbeiner, F. M.
dc.contributor.authorHummatov, R.
dc.contributor.authorKelley, R. L.
dc.contributor.authorKilbourne, C. A.
dc.contributor.authorMiniussi, Antoine
dc.contributor.authorPorter, F. S.
dc.contributor.authorSadleir, J. E.
dc.contributor.authorSakai, Kazuhiro
dc.contributor.authorSmith, S. J.
dc.contributor.authorWakeham, Nicholas
dc.contributor.authorWassell, E. J.
dc.date.accessioned2022-01-20T17:01:30Z
dc.date.available2022-01-20T17:01:30Z
dc.date.issued2020-02-24
dc.description.abstractThe energy range of transition-edge sensor (TES) X-ray microcalorimeters with a multiplexed readout depends upon the width and shape of the TES superconducting transition, and also on the dynamic range of the readout. In many detector systems, the multiplexed readout slew rate capability will be the limiting factor for the energy range. In these cases, if we are willing to accept some energy resolution degrada tion, we can signifcantly extend the energy range by increasing the bath temperature of operation, essentially creating a second “extended energy range” mode of opera tion. For example, if we require the very highest energy resolution up to 7 keV, and wish to optimize the design up to this energy, for some measurements it could be very benefcial to have a mode where we can extend the energy range to 15–20 keV even if some energy resolution is sacrifced. In this paper, we explore the trade-of between dynamic range and energy resolution from changing the bath temperature of the TES. We present measurements of TES resolution and slew rate as a function of bath temperature and compare to numerical simulations.en_US
dc.description.urihttps://link.springer.com/article/10.1007/s10909-020-02400-xen_US
dc.format.extent12 pagesen_US
dc.genrejournal articlesen_US
dc.identifierdoi:10.13016/m2x0cb-7h7b
dc.identifier.citationBeaumont, S., Adams, J.S., Bandler, S.R. et al. Extension of the Energy Range Accessible with a TES Using Bath Temperature Variations. J Low Temp Phys 199, 704–715 (2020). https://doi.org/10.1007/s10909-020-02400-xen_US
dc.identifier.urihttps://doi.org/10.1007/s10909-020-02400-x
dc.identifier.urihttp://hdl.handle.net/11603/24033
dc.language.isoen_USen_US
dc.publisherSpringeren_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Center for Space Sciences and Technology
dc.relation.ispartofUMBC Physics Department
dc.relation.ispartofUMBC Faculty Collection
dc.rightsThis work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.en_US
dc.rightsPublic Domain Mark 1.0*
dc.rights.urihttp://creativecommons.org/publicdomain/mark/1.0/*
dc.titleExtension of the Energy Range Accessible with a TES Using Bath Temperature Variationsen_US
dc.typeTexten_US
dcterms.creatorhttps://orcid.org/0000-0001-8397-9338en_US
dcterms.creatorhttps://orcid.org/0000-0003-0622-5174en_US
dcterms.creatorhttps://orcid.org/0000-0002-9247-3010en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Beaumont2020_Article_ExtensionOfTheEnergyRangeAcces.pdf
Size:
2.2 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: