Statistical Meta-Analysis: Air Pollution & Children’s Health

Author/Creator ORCID

Date

2011

Department

Program

Citation of Original Publication

Stanwyck, Elizabeth, and Rong Wei. “Statistical Meta-Analysis: Air Pollution & Children’s Health.” International Journal of Statistical Science 11 (2011): 223–244. https://csa.ru.ac.bd/stat-ijss/journals/v-11s-iss-15-pdf/.

Rights

This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
Public Domain Mark 1.0

Subjects

Abstract

There have been numerous studies seeking to establish an association between air pollution and children’s adverse health outcomes, and the ultimate findings are often varied. A few studies found a statistically significant association between an increase in a specific pollutant and an adverse health effect among children, while others find a non-significant association between the same pair of variables. These conflicting results undermine confidence in the final conclusions, and this leads naturally to a novel application of the so-called statistical meta-analysis whose primary objective is to integrate or synthesize the findings from independent and comparable studies. In this paper we first review a recent statistical meta-analysis paper by Weinmayr et al. (2010) dealing with studies on the effects of NO₂ and PM₁₀ on some aspects of children’s health. In the second part of this paper, we conduct our own meta-analysis focusing on the association between children’s (binary) health outcomes (such as cough and respiratory symptoms) and four pollutants: PM₁₀, NO₂, SO₂, and O₃. While we find a statistically significant association with every pollutant, it turns out that for PM₁₀, NO₂, and SO₂, there is significant heterogeneity among the estimated effect sizes (odds ratios). Finally, we explore the techniques of meta-regression by incorporating distinct study features to meaningfully explain the heterogeneity.