Dark regeneration of rhodopsin in crayfish photoreceptors

dc.contributor.authorCronin, Thomas W.
dc.contributor.authorGoldsmith, Timothy H .
dc.date.accessioned2019-05-24T14:59:05Z
dc.date.available2019-05-24T14:59:05Z
dc.date.issued1984-07-01
dc.description.abstractThe eyes of crayfish were exposed to lights of known spectral composition, and the course of regeneration was followed in the dark by measuring the content of rhodopsin and metarhodopsin in single rhabdoms isolated at various times after the adaptation, using an assay that is based on the fluorescence of metarhodopsin. Complete recovery requires several days in the dark after intense adaptation to orange light, but requires less than 2 d after blue light exposure. Following an orange light exposure with blue produces recovery kinetics characteristic of the blue light exposure alone. This quickening of recovery occurs whether the receptors are exposed to blue light either immediately or many hours after the original exposure to orange. Conversely, following blue light adaptation with orange leads to slow recovery, which is characteristic of orange alone. Recovery from long-wavelength adaptation is slower principally because many rhabdoms seem to delay the onset of regeneration. We suggest that the regeneration system is itself photosensitive, and after orange light adaptation the supply of active chromophore (presumably 11-cis retinal) limits the rate of recovery. Once started, recovery proceeds slowly and continuously, and the total pigment concentration (rhodopsin plus metarhodopsin) in the rhabdomeric membrane remains approximately constant. Within hours after intense adapting exposures, the rhabdoms become altered in appearance, the surfaces become coated with accessory pigment, and the bands of microvilli are less distinct. These changes persist until recovery of rhodopsin proceeds, which suggests that visual pigment regeneration results from addition of newly synthesized rhodopsin associated with membrane turn-over.en_US
dc.description.sponsorshipThis work was supported in part by National Institutes of Health grant EY00222 to Yale University . T.W.C . was a Postdoctoral Trainee on National Institutes of Health Training Grant EY07000-07 .en_US
dc.description.urihttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228723/en_US
dc.format.extent19 pagesen_US
dc.genrejournal articlesen_US
dc.identifierdoi:10.13016/m2yzri-0air
dc.identifier.citationTHOMAS W. CRONIN and TIMOTHY H . GOLDSMITH, Dark regeneration of rhodopsin in crayfish photoreceptors, J Gen Physiol, 1984 Jul 1; 84(1): 63–81, https://doi.org/10.1085/jgp.84.1.63en_US
dc.identifier.urihttps://doi.org/10.1085/jgp.84.1.63
dc.identifier.urihttp://hdl.handle.net/11603/13939
dc.language.isoen_USen_US
dc.publisherThe Rockefeller University Pressen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Biological Sciences Department Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.subjectcrayfish photoreceptorsen_US
dc.subjectrhodopsinen_US
dc.subjectpigmenten_US
dc.subjectmicrovillien_US
dc.titleDark regeneration of rhodopsin in crayfish photoreceptorsen_US
dc.typeTexten_US

Files

License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: