Global linearization without hyperbolicity

Date

2025-02-13

Department

Program

Citation of Original Publication

Rights

This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
Public Domain

Abstract

We give a proof of an extension of the Hartman-Grobman theorem to nonhyperbolic but asymptotically stable equilibria of vector fields. Moreover, the linearizing topological conjugacy is (i) defined on the entire basin of attraction if the vector field is complete, and (ii) a $C^{k\geq 1}$ diffeomorphism on the complement of the equilibrium if the vector field is $C^k$ and the underlying space is not $5$-dimensional. We also show that the $C^k$ statement in the $5$-dimensional case is equivalent to the $4$-dimensional smooth Poincar\'{e} conjecture.