Building a landslide hazard indicator with machine learning and land surface models

Department

Program

Citation of Original Publication

Stanley, T., D. Kirschbaum, S. Sobieszczyk, et al. 2020. "Building a landslide hazard indicator with machine learning and land surface models." Environmental Modelling & Software, 129: 104692 [10.1016/j.envsoft.2020.104692]

Rights

Public Domain Mark 1.0
This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.

Subjects

Abstract

The U.S. Pacific Northwest has a history of frequent and occasionally deadly landslides caused by various factors. Using a multivariate, machine-learning approach, we combined a Pacific Northwest Landslide Inventory with a 36-year gridded hydrologic dataset from the National Climate Assessment – Land Data Assimilation System to produce a landslide hazard indicator (LHI) on a daily 0.125-degree grid. The LHI identified where and when landslides were most probable over the years 1979–2016, addressing issues of bias and completeness that muddy the analysis of multi-decadal landslide inventories. The seasonal cycle was strong along the west coast, with a peak in the winter, but weaker east of the Cascade Range. This lagging indicator can fill gaps in the observational record to identify the seasonality of landslides over a large spatiotemporal domain and show how landslide hazard has responded to a changing climate.