Minimax Lower Bound of k-Monotone Estimation in the Sup-norm

dc.contributor.authorLebair, Teresa M.
dc.contributor.authorShen, Jinglai
dc.date.accessioned2019-06-11T16:40:15Z
dc.date.available2019-06-11T16:40:15Z
dc.date.issued2019-04-18
dc.description2019 53rd Annual Conference on Information Sciences and Systems (CISS)en
dc.description.abstractBelonging to the framework of shape constrained estimation, k-monotone estimation refers to the nonparametric estimation of univariate k-monotone functions, e.g., monotone and convex unctions. This paper develops minimax lower bounds for k-monotone regression problems under the sup-norm for general k by constructing a family of k-monotone piecewise polynomial functions (or hypotheses) belonging to suitable Hölder and Sobolev classes. After establishing that these hypotheses satisfy several properties, we employ results from general min-imax lower bound theory to obtain the desired k-monotone regression minimax lower bound. Implications and extensions are also discussed.en
dc.description.urihttps://ieeexplore.ieee.org/document/8692914en
dc.format.extent6 pagesen
dc.genreconference papers and proceedingsen
dc.identifierdoi:10.13016/m27dbw-bbrp
dc.identifier.citationTeresa M. Lebair, Jinglai Shen, Minimax Lower Bound of k-Monotone Estimation in the Sup-norm, 2019 53rd Annual Conference on Information Sciences and Systems (CISS), DOI: 10.1109/CISS.2019.8692914en
dc.identifier.urihttps://doi.org/10.1109/CISS.2019.8692914
dc.identifier.urihttp://hdl.handle.net/11603/14044
dc.language.isoenen
dc.publisherIEEEen
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Mathematics Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.rights ©(2019) IEEE
dc.subjectconvex programmingen
dc.subjectestimation theoryen
dc.subjectminimax techniquesen
dc.subjectpolynomialsen
dc.subjectregression analysisen
dc.subjectk-monotone piecewise polynomial functionsen
dc.subjectsup-normen
dc.subjectgeneral minimax lower bound theoryen
dc.subjectk-monotone regression minimaxen
dc.titleMinimax Lower Bound of k-Monotone Estimation in the Sup-normen
dc.typeTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
JHU_CISS_TL05.pdf
Size:
276.83 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: