Minimax Lower Bound of k-Monotone Estimation in the Sup-norm

dc.contributor.authorLebair, Teresa M.
dc.contributor.authorShen, Jinglai
dc.date.accessioned2019-06-11T16:40:15Z
dc.date.available2019-06-11T16:40:15Z
dc.date.issued2019-04-18
dc.description2019 53rd Annual Conference on Information Sciences and Systems (CISS)en_US
dc.description.abstractBelonging to the framework of shape constrained estimation, k-monotone estimation refers to the nonparametric estimation of univariate k-monotone functions, e.g., monotone and convex unctions. This paper develops minimax lower bounds for k-monotone regression problems under the sup-norm for general k by constructing a family of k-monotone piecewise polynomial functions (or hypotheses) belonging to suitable Hölder and Sobolev classes. After establishing that these hypotheses satisfy several properties, we employ results from general min-imax lower bound theory to obtain the desired k-monotone regression minimax lower bound. Implications and extensions are also discussed.en_US
dc.description.urihttps://ieeexplore.ieee.org/document/8692914en_US
dc.format.extent6 pagesen_US
dc.genreconference papers and proceedingsen_US
dc.identifierdoi:10.13016/m27dbw-bbrp
dc.identifier.citationTeresa M. Lebair, Jinglai Shen, Minimax Lower Bound of k-Monotone Estimation in the Sup-norm, 2019 53rd Annual Conference on Information Sciences and Systems (CISS), DOI: 10.1109/CISS.2019.8692914en_US
dc.identifier.urihttps://doi.org/10.1109/CISS.2019.8692914
dc.identifier.urihttp://hdl.handle.net/11603/14044
dc.language.isoen_USen_US
dc.publisherIEEEen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Mathematics Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.rights ©(2019) IEEE
dc.subjectconvex programmingen_US
dc.subjectestimation theoryen_US
dc.subjectminimax techniquesen_US
dc.subjectpolynomialsen_US
dc.subjectregression analysisen_US
dc.subjectk-monotone piecewise polynomial functionsen_US
dc.subjectsup-normen_US
dc.subjectgeneral minimax lower bound theoryen_US
dc.subjectk-monotone regression minimaxen_US
dc.titleMinimax Lower Bound of k-Monotone Estimation in the Sup-normen_US
dc.typeTexten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
JHU_CISS_TL05.pdf
Size:
276.83 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: