Minimax Lower Bound of k-Monotone Estimation in the Sup-norm
dc.contributor.author | Lebair, Teresa M. | |
dc.contributor.author | Shen, Jinglai | |
dc.date.accessioned | 2019-06-11T16:40:15Z | |
dc.date.available | 2019-06-11T16:40:15Z | |
dc.date.issued | 2019-04-18 | |
dc.description | 2019 53rd Annual Conference on Information Sciences and Systems (CISS) | en_US |
dc.description.abstract | Belonging to the framework of shape constrained estimation, k-monotone estimation refers to the nonparametric estimation of univariate k-monotone functions, e.g., monotone and convex unctions. This paper develops minimax lower bounds for k-monotone regression problems under the sup-norm for general k by constructing a family of k-monotone piecewise polynomial functions (or hypotheses) belonging to suitable Hölder and Sobolev classes. After establishing that these hypotheses satisfy several properties, we employ results from general min-imax lower bound theory to obtain the desired k-monotone regression minimax lower bound. Implications and extensions are also discussed. | en_US |
dc.description.uri | https://ieeexplore.ieee.org/document/8692914 | en_US |
dc.format.extent | 6 pages | en_US |
dc.genre | conference papers and proceedings | en_US |
dc.identifier | doi:10.13016/m27dbw-bbrp | |
dc.identifier.citation | Teresa M. Lebair, Jinglai Shen, Minimax Lower Bound of k-Monotone Estimation in the Sup-norm, 2019 53rd Annual Conference on Information Sciences and Systems (CISS), DOI: 10.1109/CISS.2019.8692914 | en_US |
dc.identifier.uri | https://doi.org/10.1109/CISS.2019.8692914 | |
dc.identifier.uri | http://hdl.handle.net/11603/14044 | |
dc.language.iso | en_US | en_US |
dc.publisher | IEEE | en_US |
dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
dc.relation.ispartof | UMBC Mathematics Department Collection | |
dc.relation.ispartof | UMBC Faculty Collection | |
dc.rights | This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author. | |
dc.rights | ©(2019) IEEE | |
dc.subject | convex programming | en_US |
dc.subject | estimation theory | en_US |
dc.subject | minimax techniques | en_US |
dc.subject | polynomials | en_US |
dc.subject | regression analysis | en_US |
dc.subject | k-monotone piecewise polynomial functions | en_US |
dc.subject | sup-norm | en_US |
dc.subject | general minimax lower bound theory | en_US |
dc.subject | k-monotone regression minimax | en_US |
dc.title | Minimax Lower Bound of k-Monotone Estimation in the Sup-norm | en_US |
dc.type | Text | en_US |