A Top-k Analysis Using Multi-level Association Rule Mining for Autism Treatments
dc.contributor.author | Engle, Kelley M. | |
dc.contributor.author | Rada, Roy | |
dc.date.accessioned | 2020-11-13T18:22:48Z | |
dc.date.available | 2020-11-13T18:22:48Z | |
dc.description.abstract | Association rule mining is based on associations of attribute values in a database. To facilitate finding meaningful rules, we segment the database by a categorization of database records based on a taxonomy on one of the attribute value sets. To test the value of this approach we have applied it to a large database about treatment impacts on autistic children. The segmented analyses lead to interestingly, different results from the analyses done without segmentation. | en_US |
dc.description.uri | https://link.springer.com/chapter/10.1007%2F978-3-642-21657-2_35 | en_US |
dc.format.extent | 9 pages | en_US |
dc.genre | conference papers and proceedings preprints | en_US |
dc.identifier | doi:10.13016/m2i5nf-mgjb | |
dc.identifier.citation | Engle K.M., Rada R. (2011) A Top-k Analysis Using Multi-level Association Rule Mining for Autism Treatments. In: Stephanidis C. (eds) Universal Access in Human-Computer Interaction. Applications and Services. UAHCI 2011. Lecture Notes in Computer Science, vol 6768. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21657-2_35 | en_US |
dc.identifier.uri | https://doi.org/10.1007/978-3-642-21657-2_35 | |
dc.identifier.uri | http://hdl.handle.net/11603/20056 | |
dc.language.iso | en_US | en_US |
dc.publisher | Springer Nature | en_US |
dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
dc.relation.ispartof | UMBC Information Systems Department Collection | |
dc.relation.ispartof | UMBC Faculty Collection | |
dc.rights | This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author. | |
dc.rights | © Springer-Verlag Berlin Heidelberg 2011 | |
dc.title | A Top-k Analysis Using Multi-level Association Rule Mining for Autism Treatments | en_US |
dc.type | Text | en_US |