On the attractor for the semi-dissipative Boussinesq equations

dc.contributor.authorBiswas, Animikh
dc.contributor.authorFoias, Ciprian
dc.contributor.authorLarios, Adam
dc.date.accessioned2024-11-14T15:18:24Z
dc.date.available2024-11-14T15:18:24Z
dc.date.issued2015-12-08
dc.description.abstractIn this article, we study the long time behavior of solutions of a variant of the Boussinesq system in which the equation for the velocity is parabolic while the equation for the temperature is hyperbolic. We prove that the system has a global attractor which retains some of the properties of the global attractors for the 2D and 3D Navier–Stokes equations. Moreover, this attractor contains infinitely many invariant manifolds in which several universal properties of the Batchelor, Kraichnan, Leith theory of turbulence are potentially present.RésuméDans cet article nous étudions le comportment en temps long infini des solutions d'un système du Boussinesq partiellement dissipatif, dont une est parabolique et l'autre est hyperbolique. Dans ce but, nous introduisons un attracteur universel qui retient plusieurs proprietés des attracteurs universels des équations de Navier–Stokes en dimension deux ou trois, et qui contient une infinité de varietés invariantes dans lesquelles plusieurs proprietés universelles de la théorie de la turbulence bidimensionnelle de Batchelor, Kraichnan et Leith, sont potentiellement présentes.
dc.description.sponsorshipThe research of A. Biswas was partially supported by NSF grants DMS 1425877, DMS 1517027 and the CNMS grant at UMBC while the research of C. Foias was supported in part by the NSF grants DMS 1109784 and DMS 1516866.
dc.description.urihttps://www.sciencedirect.com/science/article/pii/S0294144915300111
dc.format.extent34 pages
dc.genrejournal articles
dc.genrepostprints
dc.identifierdoi:10.13016/m2ez3r-s1fa
dc.identifier.citationBiswas, Animikh, Ciprian Foias, and Adam Larios. “On the Attractor for the Semi-Dissipative Boussinesq Equations.” Annales de l’Institut Henri Poincare (C) Non Linear Analysis 34, no. 2 (March 1, 2017): 381–405. https://doi.org/10.1016/j.anihpc.2015.12.006.
dc.identifier.urihttps://doi.org/10.1016/j.anihpc.2015.12.006
dc.identifier.urihttp://hdl.handle.net/11603/36915
dc.language.isoen_US
dc.publisherElsevier
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Mathematics and Statistics Department
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectNavier–Stokes equations
dc.subjectBoussinesq equations
dc.subjectGlobal attractor
dc.subjectSemi-dissipative system
dc.subjectTurbulence
dc.titleOn the attractor for the semi-dissipative Boussinesq equations
dc.title.alternativeA generalized notion of attractor for the semi- dissipative Boussinesq equations
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0001-8594-0568

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S0294144915300111am.pdf
Size:
902.42 KB
Format:
Adobe Portable Document Format