Interannual Variations of Stratospheric Water Vapor in MLS Observations and Climate Model Simulations
Loading...
Author/Creator
Author/Creator ORCID
Date
2014-11-01
Type of Work
Department
Program
Citation of Original Publication
Kawatani, Yoshio, Jae N. Lee, and Kevin Hamilton. "Interannual Variations of Stratospheric Water Vapor in MLS Observations and Climate Model Simulations", Journal of the Atmospheric Sciences 71, 11 (2014): 4072-4085, doi: https://doi.org/10.1175/JAS-D-14-0164.1
Rights
© Copyright 01 Nov 2014 American Meteorological Society (AMS). For permission to reuse any portion of this work, please contact permissions@ametsoc.org. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act (17 U.S. Code §?107) or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC § 108) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. All AMS journals and monograph publications are registered with the Copyright Clearance Center (https://www.copyright.com). Additional details are provided in the AMS Copyright Policy statement, available on the AMS website (https://www.ametsoc.org/PUBSCopyrightPolicy).
Subjects
Abstract
By analyzing the almost-decade-long record of water vapor measurements from the Microwave Limb Sounder (MLS) instrument on the NASA Aura satellite and by detailed diagnostic analysis of the results from state-of-the art climate model simulations, this study confirmed the conceptual picture of the interannual variation in equatorial stratospheric water vapor discussed in earlier papers (e.g., Geller et al.). The interannual anomalies in water vapor are strongly related to the dynamical quasi-biennial oscillation (QBO), and this study presents the first QBO composite of the time–height structure of the equatorial water vapor anomalies. The anomalies display upward propagation below about 10 hPa in a manner analogous to the annual “tape recorder” effect, but at higher levels they show clear downward propagation. This study examined these variations in the Model for Interdisciplinary Research on Climate (MIROC)-AGCM and in four models in phase 5 of the Coupled Model Intercomparison Project (CMIP5) that simulate realistic QBOs. Diagnostic budget analysis of the MIROC-AGCM data and comparisons among the CMIP5 model results demonstrate (i) the importance of temperature anomalies at the tropopause induced by the QBO for lower-stratospheric water vapor variations and (ii) that upper-stratospheric water vapor anomalies are largely driven by advection of the mean vertical gradient of water content by the QBO interannual fluctuations in the vertical wind.