Abstract functional second-order stochastic evolution equations with applications

dc.contributor.authorMcKibben, Mark A.
dc.contributor.authorWebster, Micah
dc.contributor.departmentMathematicsen_US
dc.contributor.programCenter for Data, Mathematical, and Computational Sciencesen_US
dc.date.accessioned2017-07-26T23:59:50Z
dc.date.available2017-07-26T23:59:50Z
dc.date.issued2017-01-24
dc.description.abstractWe investigate a class of abstract second-order damped functional stochastic evolution equations driven by a fractional Brownian motion in a separable Hilbert space. The global existence of mild solutions is established under various growth and compactness conditions. The case of a nonlocal initial condition is addressed. A related convergence result is discussed, and the theory is applied to stochastic wave and beam equations, as well as a spring-mass system, for illustrative purposes.en_US
dc.genrejournal articlesen_US
dc.identifierdoi:10.13016/M2RJ48V1H
dc.identifier.citationM. McKibben, M.Webster, “Abstract functional second-order stochastic evolution equations with applications, ” Afrika Matematika, (2017), 1-26, doi: 10.1007/s13370-017-0480-1.en_US
dc.identifier.urihttp://hdl.handle.net/11603/4375
dc.language.isoen_USen_US
dc.subjectCosine familyen_US
dc.subjectSecond-order equationen_US
dc.subjectFractional Brownian motionen_US
dc.subjectStochastic evolution equationen_US
dc.titleAbstract functional second-order stochastic evolution equations with applicationsen_US
dc.typeTexten_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.6 KB
Format:
Item-specific license agreed upon to submission
Description: