The Value of Air Quality Forecasting in the Mid-Atlantic Region

Date

2012-01-01

Department

Program

Citation of Original Publication

Garner, Gregory G., and Anne M. Thompson. “The Value of Air Quality Forecasting in the Mid-Atlantic Region.” Weather, Climate, and Society 4, no. 1 (January 1, 2012): 69–79. https://doi.org/10.1175/WCAS-D-10-05010.1.

Rights

© Copyright 2012-01-01 American Meteorological Society (AMS). For permission to reuse any portion of this work, please contact permissions@ametsoc.org. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act (17 U.S. Code § 107) or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC § 108) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. All AMS journals and monograph publications are registered with the Copyright Clearance Center (https://www.copyright.com). Additional details are provided in the AMS Copyright Policy statement, available on the AMS website (https://www.ametsoc.org/PUBSCopyrightPolicy).

Subjects

Abstract

Air quality forecasts produced by the National Air Quality Forecast Capability (NAQFC), human air quality forecasters, and persistence are evaluated for predictive skill and economic value when used to inform decisions regarding pollutant emission and exposure. Surface ozone forecasts and observations were collected from 40 monitors representing eight forecast regions throughout Washington, D.C.; Virginia; and Maryland over the 2005–09 ozone seasons (April–October). The skill of the forecasts are quantified using discrete statistics, such as correlation, mean bias, and root-mean-square error, and categorical statistics, such as exceedance hit rate, false alarm rate, and critical success index. The value of the forecasts are quantified using a decision model based on costs to protect the public against a poor air quality event and the losses incurred if no protective measures are taken. The results indicate that the most skillful forecast method is not necessarily the most valuable forecast method. Air shed managers need to consider multiple forecast methods when deciding on multiple protective measures, because a single measure of forecast skill can often hide the user’s sensitivity to forecast error for a specific decision.