In-Situ Validation of a Surrogate-based Lung Motion Model for the Long-term Capture of Cycle-To-Cycle Variations with 4DCT

dc.contributor.authorRanjbar, M.
dc.contributor.authorSabouri, P.
dc.contributor.authorMossahebi, S.
dc.contributor.authorSawant, A.
dc.contributor.authorMohindra, P.
dc.contributor.authorLasio, G.
dc.contributor.authorTopoleski, L.D.T.
dc.date.accessioned2020-11-20T18:49:52Z
dc.date.available2020-11-20T18:49:52Z
dc.date.issued2020-11-01
dc.description.abstractWe propose a novel volumetric surrogate-based motion model (SMM) to address limitations of single cycle respiratory-correlated 4DCT in capturing breathing variations. SMMs are constructed based on the a priori correlation between an external surrogate and the internal motion observed during the planning CT acquisition. Our machine-learning based volumetric SMM exploits the internal-external correlation observed at the time of treatment delivery, minimizing the loss of accuracy resulting from commonly occurring changes in this correlation. We evaluated improvements in target position estimation from our SMM compared to 4DCT by analyzing 2,369 fluoroscopic (FL) images.en_US
dc.description.urihttps://www.redjournal.org/article/S0360-3016(20)32363-4/fulltexten_US
dc.format.extent1 pageen_US
dc.genrejournal articlesen_US
dc.identifierdoi:10.13016/m24c3t-zzio
dc.identifier.citationM. Ranjbar, P. Sabouri, S. Mossahebi, A. Sawant, P. Mohindra, G. Lasio and L.D.T. Topoleski, In-Situ Validation of a Surrogate-based Lung Motion Model for the Long-term Capture of Cycle-To-Cycle Variations with 4DCT, IJROBP, VOLUME 108, ISSUE 3, DOI:https://doi.org/10.1016/j.ijrobp.2020.07.944en_US
dc.identifier.urihttps://doi.org/10.1016/j.ijrobp.2020.07.944
dc.identifier.urihttp://hdl.handle.net/11603/20122
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Mechanical Engineering Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Student Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.subjectrespiration
dc.subjectbreathing
dc.subjectlungs
dc.subjectmachine learning techniques
dc.subjectCT-based volumetric SMM
dc.titleIn-Situ Validation of a Surrogate-based Lung Motion Model for the Long-term Capture of Cycle-To-Cycle Variations with 4DCTen_US
dc.typeTexten_US

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: