MASTAF: A Model-Agnostic Spatio-Temporal Attention Fusion Network for Few-shot Video Classification

dc.contributor.authorLiu, Rex
dc.contributor.authorZhang, Huanle
dc.contributor.authorPirsiavash, Hamed
dc.contributor.authorLiu, Xin
dc.date.accessioned2022-11-14T15:49:56Z
dc.date.available2022-11-14T15:49:56Z
dc.date.issued2023-02-06
dc.description2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); Waikoloa, HI, USA; 02-07 January 2023
dc.description.abstractWe propose MASTAF, a Model-Agnostic SpatioTemporal Attention Fusion network for few-shot video classification. MASTAF takes input from a general video spatial and temporal representation,e.g., using 2D CNN, 3D CNN, and Video Transformer. Then, to make the most of such representations, we use self- and cross-attention models to highlight the critical spatio-temporal region to increase the inter-class variations and decrease the intra-class variations. Last, MASTAF applies a lightweight fusion network and a nearest neighbor classifier to classify each query video. We demonstrate that MASTAF improves the state-of-the-art performance on three few-shot video classification benchmarks(UCF101, HMDB51, and Something-Something-V2), e.g., by up to 91.6%, 69.5%, and 60.7% for five-way one-shot video classification, respectively.en_US
dc.description.urihttps://ieeexplore.ieee.org/abstract/document/10030894en_US
dc.format.extent10 pagesen_US
dc.genreconference papers and proceedingsen_US
dc.genrepostprintsen_US
dc.identifierdoi:10.13016/m2j31x-akic
dc.identifier.citationLiu, Xin, Huanle Zhang, Hamed Pirsiavash, and Xin Liu. “MASTAF: A Model-Agnostic Spatio-Temporal Attention Fusion Network for Few-Shot Video Classification.” In 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2507–16, 2023. https://doi.org/10.1109/WACV56688.2023.00254.
dc.identifier.urihttps://doi.org/10.1109/WACV56688.2023.00254
dc.identifier.urihttp://hdl.handle.net/11603/26320
dc.language.isoen_USen_US
dc.publisherIEEE
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.rights© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_US
dc.titleMASTAF: A Model-Agnostic Spatio-Temporal Attention Fusion Network for Few-shot Video Classificationen_US
dc.title.alternativeSTAF: A Spatio-Temporal Attention Fusion Network for Few-shot Video Classification
dc.typeTexten_US

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Liu_MASTAF_A_Model-Agnostic_Spatio-Temporal_Attention_Fusion_Network_for_Few-Shot_Video_WACV_2023_paper.pdf
Size:
1.23 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Liu_MASTAF_A_Model-Agnostic_WACV_2023_supplemental.pdf
Size:
831.74 KB
Format:
Adobe Portable Document Format
Description:
Supplement

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: