Using OSSEs to Evaluate GXS Impact in the Context of International Coordination

dc.contributor.authorMcGrath-Spangler, Erica L.
dc.contributor.authorPrivé, N. C.
dc.contributor.authorKarpowicz, Bryan M.
dc.contributor.authorMoradi, Isaac
dc.contributor.authorHeidinger, Andrew K.
dc.date.accessioned2024-03-06T18:52:22Z
dc.date.available2024-03-06T18:52:22Z
dc.date.issued2024-02-22
dc.description.abstractThe Geostationary eXtended Observations (GeoXO) program plans to include a hyperspectral infrared (IR) sounder on its central satellite, expected to launch in the mid-2030s. As part of the follow-on to the GOES program, the NOAA/NASA GeoXO Sounder (GXS) instrument will join several international counterparts in a geostationary orbit. In preparation, the NASA Global Modeling and Assimilation Office (GMAO) assessed the potential effectiveness of GXS both as a single GEO IR sounder and as part of a global ring that includes international partners. Using a global observing system simulation experiment (OSSE) framework, GXS was assessed from a numerical weather prediction (NWP) perspective. Evaluation of the ability of GXS, both alone and as part of a global ring ofGEOsounders, to improveweather prediction of thermodynamic variables was performed globally and regionally. GXS dominated regional analysis and forecast improvements, and contributed significantly to global increases in forecast skill relative to a Control. However, more sustained global improvements, on the order of 4 days, relied on international partnerships. Additionally, GXS showed the capability to improve hurricane forecast track errors on the timescales necessary for evacuation warnings. The FSOI metric over CONUS showed that the GXS observations provided the largest radiance impact on the moist energy error norm reduction. The high temporal resolution atmospheric profile information over much of the western hemisphere from GXS provides an opportunity to improve the representation of weather systems and their forecasts.
dc.description.sponsorshipThe authors wish to gratefully acknowledge allowances on the NASA HighEnd Computing resources and Ron Errico for developing the baseline OSSE system. Funding was provided by the NOAA and NASA GeoXO Project. The software for simulating GPSRO observations was provided by the Radio Occultation Processing Package (ROPP) of the Radio Occultation Meteorology (ROM) Satellite Applications Facility (SAF) of EUMETSAT, with the assistance of Sean Healy at ECMWF. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at GSFC. The authors would also like to thank three anonymous reviewers whose comments provided valuable feedback to improving this manuscript.
dc.description.urihttps://journals.ametsoc.org/view/journals/atot/aop/JTECH-D-23-0141.1/JTECH-D-23-0141.1.xml
dc.format.extent45 pages
dc.genrejournal articles
dc.genrepostprints
dc.identifierdoi:10.13016/m2vpdp-ra5p
dc.identifier.citationMcGrath-Spangler, Erica L., N. C. Privé, Bryan M. Karpowicz, Isaac Moradi, and Andrew K. Heidinger. “Using OSSEs to Evaluate GXS Impact in the Context of International Coordination.” Journal of Atmospheric and Oceanic Technology 1, no. aop (February 22, 2024). https://doi.org/10.1175/JTECH-D-23-0141.1.
dc.identifier.urihttps://doi.org/10.1175/JTECH-D-23-0141.1
dc.identifier.urihttp://hdl.handle.net/11603/31850
dc.language.isoen_US
dc.publisherAMS
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC GESTAR II
dc.rightsThis work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
dc.rightsPublic Domain Mark 1.0
dc.rights.urihttps://creativecommons.org/publicdomain/mark/1.0/
dc.titleUsing OSSEs to Evaluate GXS Impact in the Context of International Coordination
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0002-6630-2680

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
atot-JTECH-D-23-0141.1.pdf
Size:
4.54 MB
Format:
Adobe Portable Document Format