Tumor-induced MDSC act via remote control to inhibit L-selectin-dependent adaptive immunity in lymph nodes
Loading...
Links to Files
Author/Creator ORCID
Date
2016-12-08
Type of Work
Department
Program
Citation of Original Publication
Amy W Ku, Jason B Muhitch, Colin A Powers, Michael Diehl, Minhyung Kim, et.al, Tumor-induced MDSC act via remote control to inhibit L-selectin-dependent adaptive immunity in lymph nodes, eLife 2016; 5:e17375, DOI: 10.7554/eLife.17375
Rights
This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Attribution 4.0 International (CC BY 4.0)
Attribution 4.0 International (CC BY 4.0)
Abstract
Myeloid-derived suppressor cells (MDSC) contribute to an immunosuppressive network that drives cancer escape by disabling T cell adaptive immunity. The prevailing view is that MDSC-mediated immunosuppression is restricted to tissues where MDSC co-mingle with T cells. Here we show that splenic or, unexpectedly, blood-borne MDSC execute far-reaching immune suppression by reducing expression of the L-selectin lymph node (LN) homing receptor on naïve T and B cells. MDSC-induced L-selectin loss occurs through a contact-dependent, post-transcriptional mechanism that is independent of the major L-selectin sheddase, ADAM17, but results in significant elevation of circulating L-selectin in tumor-bearing mice. Even moderate deficits in L-selectin expression disrupt T cell trafficking to distant LN. Furthermore, T cells preconditioned by MDSC have diminished responses to subsequent antigen exposure, which in conjunction with reduced trafficking, severely restricts antigen-driven expansion in widely-dispersed LN. These results establish novel mechanisms for MDSC-mediated immunosuppression that have unanticipated implications for systemic cancer immunity.