Content-based prediction of temporal boundaries for events in Twitter

Author/Creator ORCID





Citation of Original Publication

Akshaya Iyengar, Tim Finin, and Anupam Joshi, Content-based prediction of temporal boundaries for events in Twitter, Proceedings of the Third IEEE International Conference on Social Computing, 2011, DOI: 10.1109/PASSAT/SocialCom.2011.196


This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
© 2011 IEEE


Social media services like Twitter, Flickr and YouTube publish high volumes of user generated content as a major event occurs, making them a potential data source for event analysis. The large volume and noisy content of social media makes automatic preprocessing essential. Intuitively, the eventrelated data falls into three major phases: the buildup to the event, the event itself, and the post-event effects and repercussions. We describe an approach to automatically determine when an anticipated event started and ended by analyzing the content of tweets using an SVM classifier and hidden Markov model. We evaluate our performance by predicting event boundaries on Twitter data for a set of events in the domains of sports, weather and social activities.