Regression Networks For Calculating Englacial Layer Thickness
No Thumbnail Available
Links to Files
Author/Creator
Author/Creator ORCID
Date
2021-06-12
Type of Work
Department
Program
Citation of Original Publication
Rights
This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Subjects
Abstract
Ice thickness estimation is an important aspect of ice sheet studies. In this work, we use convolutional neural networks with multiple output nodes to regress and learn the thickness of internal ice layers in Snow Radar images collected in northwest Greenland. We experiment with some state-of-the-art networks and find that with the residual connections of ResNet50, we could achieve a mean absolute error of 1.251 pixels over the test set. Such regression-based networks can further be improved by embedding domain knowledge and radar information in the neural network in order to reduce the requirement of manual annotations.