Identifying Chemical Aerosol Signatures using Optical Suborbital Observations: How much can optical properties tell us about aerosol composition?

Author/Creator ORCID

Date

2021-09-24

Department

Program

Citation of Original Publication

Kacenelenbogen, Meloë S. F. et al.; Identifying Chemical Aerosol Signatures using Optical Suborbital Observations: How much can optical properties tell us about aerosol composition?; Atmospheric Chemistry and Physics, 24 September, 2021; https://doi.org/10.5194/acp-2021-761

Rights

This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Public Domain Mark 1.0
This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.

Subjects

Abstract

Improvements in air quality and Earth’s climate predictions require improvements of the aerosol speciation in chemical transport models, using observational constraints. Aerosol speciation (e.g., organic aerosols, black carbon, sulfate, nitrate, ammonium, dust or sea salt) is typically determined using in situ instrumentation. Continuous, routine surface network aerosol composition measurements are not uniformly widespread over the globe. Satellites, on the other hand, can provide a maximum coverage of the horizontal and vertical atmosphere but observe aerosol optical properties (and not aerosol speciation) based on remote sensing instrumentation. Combinations of satellite-derived aerosol optical properties can inform on air mass aerosol types (AMTs e.g., clean marine, dust, polluted continental). However, these AMTs are subjectively defined, might often be misclassified and are hard to relate to the critical parameters that need to be refined in models. In this paper, we derive AMTs that are more directly related to sources and hence to speciation. They are defined, characterized, and derived using simultaneous in situ gas-phase, chemical and optical instruments on the same aircraft during the Study of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS, US, summer of 2013). First, we prescribe well-informed AMTs that display distinct aerosol chemical and optical signatures to act as a training AMT dataset. These in situ observations reduce the errors and ambiguities in the selection of the AMT training dataset. We also investigate the relative skill of various combinations of aerosol optical properties to define AMTs and how much these optical properties can capture dominant aerosol speciation. We find distinct optical signatures for biomass burning (from agricultural or wildfires), biogenic and dust-influence AMTs. Useful aerosol optical properties to characterize these signatures are the extinction angstrom exponent (EAE), the single scattering albedo, the difference of single scattering albedo in two wavelengths, the absorption coefficient, the absorption angstrom exponent (AAE), and the real part of the refractive index (RRI). We find that all four AMTs studied when prescribed using mostly airborne in situ gas measurements, can be successfully extracted from at least three combinations of airborne in situ aerosol optical properties (e.g., EAE, AAE and RRI) over the US during SEAC4RS. However, we find that the optically based classifications for BB from agricultural fires and polluted dust include a large percentage of misclassifications that limit the usefulness of results relating to those classes. The technique and results presented in this study are suitable to develop a representative, robust and diverse source-based AMT database. This database could then be used for widespread retrievals of AMTs using existing and future remote sensing suborbital instruments/networks. Ultimately, it has the potential to provide a much broader observational aerosol data set to evaluate chemical transport and air quality models than is currently available by direct in situ measurements. This study illustrates how essential it is to explore existing airborne datasets to bridge chemical and optical signatures of different AMTs, before the implementation of future spaceborne missions (e.g., the next generation of Earth Observing System (EOS) satellites addressing Aerosol, Cloud, Convection and Precipitation (ACCP) designated observables).