A Novel Atmospheric Correction Algorithm to Exploit the Diurnal Variability in Hypertemporal Geostationary Observations

dc.contributor.authorWang, Weile
dc.contributor.authorWang, Yujie
dc.contributor.authorLyapustin, Alexei
dc.contributor.authorHashimoto, Hirofumi
dc.contributor.authorPark, Taejin
dc.contributor.authorMichaelis, Andrew
dc.contributor.authorNemani, Ramakrishna
dc.date.accessioned2022-03-18T15:16:16Z
dc.date.available2022-03-18T15:16:16Z
dc.date.issued2022-02-16
dc.description.abstractThis study developed a new atmospheric correction algorithm, GeoNEX-AC, that is independent from the traditional use of spectral band ratios but dedicated to exploiting information from the diurnal variability in the hypertemporal geostationary observations. The algorithm starts by evaluating smooth segments of the diurnal time series of the top-of-atmosphere (TOA) reflectance to identify clear-sky and snow-free observations. It then attempts to retrieve the Ross-Thick–Li-Sparse (RTLS) surface bi-directional reflectance distribution function (BRDF) parameters and the daily mean atmospheric optical depth (AOD) with an atmospheric radiative transfer model (RTM) to optimally simulate the observed diurnal variability in the clear-sky TOA reflectance. Once the initial RTLS parameters are retrieved after the algorithm’s burn-in period, they serve as the prior information to estimate the AOD levels for the following days and update the surface BRDF information with the new clear-sky observations. This process is iterated through the full time span of the observations, skipping only totally cloudy days or when surface snow is detected. We tested the algorithm over various Aerosol Robotic Network (AERONET) sites and the retrieved results well agree with the ground-based measurements. This study demonstrates that the high-frequency diurnal geostationary observations contain unique information that can help to address the atmospheric correction problem from new directionsen_US
dc.description.sponsorshipW.W., H.H., T.P., A.M., and R.N. are supported by the National Aeronautics and Space Administration (NASA) under grants to NASA Earth Exchange (NEX). Y.W. and A.L. are supported by the NASA NNH19ZDA001N-ESROGSS, Earth Science Research from Operational Geostationary Satellite Systems (manager Dr. T. Lee). We are grateful to three anonymous reviewers whose constructive comments and suggestions have helped significantly improve the quality of this article.en_US
dc.description.urihttps://www.mdpi.com/2072-4292/14/4/964en_US
dc.format.extent28 pagesen_US
dc.genrejournal articlesen_US
dc.identifierdoi:10.13016/m2npln-ox0b
dc.identifier.citationWang, Weile, Yujie Wang, Alexei Lyapustin, Hirofumi Hashimoto, Taejin Park, Andrew Michaelis, and Ramakrishna Nemani. 2022. "A Novel Atmospheric Correction Algorithm to Exploit the Diurnal Variability in Hypertemporal Geostationary Observations" Remote Sensing 14, no. 4: 964. https://doi.org/10.3390/rs14040964en_US
dc.identifier.urihttps://doi.org/10.3390/rs14040964
dc.identifier.urihttp://hdl.handle.net/11603/24399
dc.language.isoen_USen_US
dc.publisherMDPIen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Joint Center for Earth Systems Technology
dc.relation.ispartofUMBC Faculty Collection
dc.rightsThis is a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.en_US
dc.rightsPublic Domain Mark 1.0*
dc.rights.urihttp://creativecommons.org/publicdomain/mark/1.0/*
dc.titleA Novel Atmospheric Correction Algorithm to Exploit the Diurnal Variability in Hypertemporal Geostationary Observationsen_US
dc.title.alternativeA Novel Atmospheric Correction Algorithm to Exploit the Diurnal Variability in Hypertemporal Geostationary Observationsen_US
dc.typeTexten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
remotesensing-14-00964.pdf
Size:
8.42 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: