Automatic Discovery of Semantic Relations using MindNet
Loading...
Permanent Link
Collections
Author/Creator
Author/Creator ORCID
Date
2010-05-19
Type of Work
Department
Program
Citation of Original Publication
Rights
This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Abstract
Information extraction deals with extracting entities (such as people,organizations or locations) and named relations between entities (such as "People born-in Country") from text documents. An important challenge in information extraction is the labeling of training data which is usually done manually and is therefore very laborious and in certain cases impractical. This paper introduces a new “model” to extract semantic relations fully automatically from text using the Encarta encyclopedia and lexical-semantic relations discovered by MindNet. MindNet is a lexical knowledge base that can be constructed fully automatically from a given text corpus without any human intervention. Encarta articles are categorized and linked to related articles by experts. We demonstrate how the structured data available in Encarta and the lexical semantic relations between words in MindNet can be used to enrich MindNet with semantic relations between entities. With a slight trade off of accuracy a semantically enriched MindNet can be used to extract relations from a text corpus without any human intervention.