A software for predicting Pavement Condition Index (PCI) using machine learning for practical decision-making with an exclusion approach

dc.contributor.authorAshqar, Huthaifa
dc.contributor.authorIssa, Amjad
dc.contributor.authorMasri, Sari
dc.date.accessioned2025-10-16T15:27:08Z
dc.date.issued2025-08-14
dc.description.abstractIn Palestine and other resource-constrained settings, determining the Pavement Condition Index (PCI) requires exhaustive visual surveys of up to 19 distress types, which is a process that is both time-consuming and costly to obtain. Despite advances in PCI prediction (2023–2025), existing methods still depend on full-distress assessments, failing to reduce fieldwork burden. We present an open?source machine learning software that classifies pavement into PCI categories (Good, Satisfactory, Fair, Poor, Impassable) by systematically excluding low-utility distresses, reducing inspection effort by up to 40% while achieving an overall accuracy of 82%. The framework integrates features such as pavement age, layer thickness, right-of-way (ROW), average daily traffic (ADT), and heavy-duty vehicle percentage.
dc.description.urihttps://www.sciencedirect.com/science/article/pii/S2352711025002705
dc.format.extent5 pages
dc.genrejournal articles
dc.identifierdoi:10.13016/m2md8q-2opd
dc.identifier.citationAshqar, Huthaifa I., Amjad Issa, and Sari Masri. “A Software for Predicting Pavement Condition Index (PCI) Using Machine Learning for Practical Decision?making with an Exclusion Approach.” SoftwareX 31 (August 2025): 102304. https://doi.org/10.1016/j.softx.2025.102304.
dc.identifier.urihttps://doi.org/10.1016/j.softx.2025.102304
dc.identifier.urihttp://hdl.handle.net/11603/40435
dc.language.isoen
dc.publisherElsevier
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Data Science
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMachine learning
dc.subjectPavement Condition Index
dc.subjectPredictive modelling
dc.subjectRandom forest
dc.subjectDistress exclusion
dc.subjectRoad maintenance
dc.titleA software for predicting Pavement Condition Index (PCI) using machine learning for practical decision-making with an exclusion approach
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0002-6835-8338

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S2352711025002705main.pdf
Size:
1015.78 KB
Format:
Adobe Portable Document Format