Machine-learning classifiers for Fermi AGN

dc.contributor.authorHassan, T.
dc.contributor.authorMirabal, Nestor
dc.contributor.authorContreras, J. L.
dc.contributor.authorOya, I.
dc.date.accessioned2020-09-03T16:26:36Z
dc.date.available2020-09-03T16:26:36Z
dc.date.issued2012-12-11
dc.description.abstractThe Fermi Gamma-ray Space Telescope is generating the most detailed map of the gamma-ray sky. While tremendously successful, approximately 25% of all associated Fermi extragalactic sources in the Second Fermi LAT Catalog (2FGL) are listed as active galactic nuclei (AGN) of uncertain type. Most of these are suspected blazar candidates without a conclusive optical spectrum or lacking spectroscopic observations. Here, we explore the use of machine-learning algorithms – Random Forests and Support Vector Machines – to predict specific AGN subclass based on observed gamma-ray properties.en_US
dc.description.sponsorshipThe authors acknowledge the support of the Spanish MINECO under project FPA2010-22056-C06-06 and the German Ministry for Education and Research (BMBF). N.M. acknowledges support from the Spanish government. through a Ram´on y Cajal fellowship. We also thank the referee for useful suggestions and comments on the manuscript.en_US
dc.description.urihttps://aip.scitation.org/doi/abs/10.1063/1.4772356en_US
dc.format.extent7 pagesen_US
dc.genreconference papers and proceedings preprintsen_US
dc.identifierdoi:10.13016/m21qaa-8bnh
dc.identifier.citationT. Hassan, N. Mirabal, I. Oya, and J. L. Contreras, Machine-learning classifiers for Fermi AGN, AIP Conference Proceedings 1505, 701 (2012); https://doi.org/10.1063/1.4772356en_US
dc.identifier.urihttps://doi.org/10.1063/1.4772356
dc.identifier.urihttp://hdl.handle.net/11603/19577
dc.language.isoen_USen_US
dc.publisherAIP publishingen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Physics Department Collection
dc.relation.ispartofUMBC Joint Center for Earth Systems Technology (JCET)
dc.relation.ispartofUMBC Center for Space Sciences and Technology (CSST) / Center for Research and Exploration in Space Sciences & Technology II (CRSST II)
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.rights© 2012 AIP Publishing LLC
dc.titleMachine-learning classifiers for Fermi AGNen_US
dc.typeTexten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1209.4359v2.pdf
Size:
501.21 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: