Producing Designer Oils in Industrial Microalgae by Rational Modulation of Co-evolving Type-2 Diacylglycerol Acyltransferases
| dc.contributor.author | Xin, Yi | |
| dc.contributor.author | Lu, Yandu | |
| dc.contributor.author | Lee, Yi-Ying | |
| dc.contributor.author | Wei, Li | |
| dc.contributor.author | Jia, Jing | |
| dc.contributor.author | Wang, Qintao | |
| dc.contributor.author | Wang, Dongmei | |
| dc.contributor.author | Bai, Fali | |
| dc.contributor.author | Hu, Hanhua | |
| dc.contributor.author | Hu, Qiang | |
| dc.contributor.author | Liu, Jin | |
| dc.contributor.author | Li, Yantao | |
| dc.contributor.author | Xu, Jian | |
| dc.date.accessioned | 2025-07-09T17:56:00Z | |
| dc.date.issued | 2017-12-04 | |
| dc.description.abstract | Microalgal oils, depending on their degree of unsaturation, can be utilized as either nutritional supplements or fuels; thus, a feedstock with genetically designed and tunable degree of unsaturation is desirable to maximize process efficiency and product versatility. Systematic profiling of ex vivo (in yeast), in vitro, and in vivo activities of type-2 diacylglycerol acyltransferases in Nannochloropsis oceanica (NoDGAT2s or NoDGTTs), via reverse genetics, revealed that NoDGAT2A prefers saturated fatty acids (SFAs), NoDGAT2D prefers monounsaturated fatty acids (MUFAs), and NoDGAT2C exhibits the strongest activity toward polyunsaturated fatty acids (PUFAs). As NoDGAT2A, 2C, and 2D originated from the green alga, red alga, and eukaryotic host ancestral participants of secondary endosymbiosis, respectively, a mechanistic model of oleaginousness was unveiled, in which the indigenous and adopted NoDGAT2s formulated functional complementarity and specific transcript abundance ratio that underlie a rigid SFA:MUFA:PUFA hierarchy in triacylglycerol (TAG). By rationally modulating the ratio of NoDGAT2A:2C:2D transcripts, a bank of N. oceanica strains optimized for nutritional supplement or fuel production with a wide range of degree of unsaturation were created, in which proportion of SFAs, MUFAs, and PUFAs in TAG varied by 1.3-, 3.7-, and 11.2-fold, respectively. This established a novel strategy to simultaneously improve productivity and quality of oils from industrial microalgae. | |
| dc.description.sponsorship | We are grateful to support from the Natural Science Foundation of China (31425002, 31600059, 31571807, and 31401116), the Chinese Academy of Sciences (KSZD-EW-Z-017 and ZDRW-ZS-2016-3), the Natural Science Foundation of Shandong (ZR2015CQ003), the U.S. National Science Foundation (CBET-1511939), and the U.S. Office of Naval Research(N00014-15-1-2219). | |
| dc.description.uri | https://www.cell.com/molecular-plant/abstract/S1674-2052(17)30310-6 | |
| dc.format.extent | 17 pages | |
| dc.genre | journal articles | |
| dc.identifier | doi:10.13016/m2lzol-vsv2 | |
| dc.identifier.citation | Xin, Yi, Yandu Lu, Yi-Ying Lee, Li Wei, Jing Jia, Qintao Wang, Dongmei Wang, et al. "Producing Designer Oils in Industrial Microalgae by Rational Modulation of Co-Evolving Type-2 Diacylglycerol Acyltransferases". Molecular Plant 10, no. 12 (4 December 2017): 1523–39. https://doi.org/10.1016/j.molp.2017.10.011. | |
| dc.identifier.uri | https://doi.org/10.1016/j.molp.2017.10.011 | |
| dc.identifier.uri | http://hdl.handle.net/11603/39360 | |
| dc.language.iso | en_US | |
| dc.publisher | Elsevier | |
| dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
| dc.relation.ispartof | UMBC Department of Marine Biotechnology | |
| dc.relation.ispartof | UMBC Chemistry & Biochemistry Department | |
| dc.relation.ispartof | UMBC Faculty Collection | |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en | |
| dc.subject | biofuels | |
| dc.subject | diacylglycerol acyltransferase | |
| dc.subject | genetic engineering | |
| dc.subject | degree of unsaturation | |
| dc.subject | Nannochloropsis | |
| dc.title | Producing Designer Oils in Industrial Microalgae by Rational Modulation of Co-evolving Type-2 Diacylglycerol Acyltransferases | |
| dc.type | Text | |
| dcterms.creator | https://orcid.org/0009-0002-6641-2019 | |
| dcterms.creator | https://orcid.org/0000-0001-7545-1883 |
