A 3D Mixed Reality Visualization of Network Topology and Activity Results in Better Dyadic Cyber Team Communication and Cyber Situational Awareness

dc.contributor.authorAsk, Torvald F.
dc.contributor.authorKullman, Kaur
dc.contributor.authorSütterlin, Stefan
dc.contributor.authorKnox, Benjamin J.
dc.contributor.authorEngel, Don
dc.contributor.authorLugo, Ricardo G.
dc.date.accessioned2022-10-11T16:41:56Z
dc.date.available2022-10-11T16:41:56Z
dc.date.issued2023-01-27
dc.description.abstractCyber defense decision-making during cyber threat situations is based on human-to-human communication aiming to establish a shared cyber situational awareness. Previous studies suggested that communication inefficiencies were among the biggest problems facing security operation center teams. There is a need for tools that allow for more efficient communication of cyber threat information between individuals both in education and during cyber threat situations. In the present study, we compared how the visual representation of network topology and traffic in 3D mixed reality versus 2D affected team performance in a sample of cyber cadets (N = 22) cooperating in dyads. Performance outcomes included network topology recognition, cyber situational awareness, confidence in judgements, experienced communication demands, observed verbal communication, and forced choice decision-making. The study utilized network data from the NATO CCDCOE 2022 Locked Shields cyber defense exercise. We found that participants using the 3D mixed reality visualization had better cyber situational awareness than participants in the 2D group. The most apparent difference was in the detection of the top five Red Team hosts targeting Blue Team systems, where the traffic associated with the identified Red Team hosts differed in the tens of thousands between the groups. The 3D mixed reality group was generally more confident in their judgments except when performing worse than the 2D group on the topology recognition task (which favored the 2D condition). Participants in the 3D mixed reality group experienced less communication demands, and performed more verbal communication aimed at establishing a shared mental model and less communications discussing task resolution. There were no differences in decision-making between the groups. This could be due to cohort effects such as formal training or the modest sample size. This is the first study comparing the effect of 3D mixed reality and 2D visualizations of network topology on dyadic cyber team communication and cyber situational awareness. Using 3D mixed reality visualizations resulted in better cyber situational awareness and team communication. The experiment should be repeated in a larger and more diverse sample to determine its potential effect on decision-making.en_US
dc.description.sponsorshipThis study was funded by the Norwegian Research Council (project #302941). Development of the Virtual Data Explorer was partly supported by the Army Research Laboratory under Cooperative Agreement Number W911NF-17-2-0083 and in conjunction with the CCDC Command, Control, Computers, Communications, Cyber, Intelligence, Surveillance, and Reconnaissance (C5ISR) Center. Development of the Virtual Data Explorer is partly supported by NASA under award number 80GSFC21M0002.en_US
dc.description.urihttps://www.frontiersin.org/articles/10.3389/fdata.2023.1042783/fullen_US
dc.format.extent21 pagesen_US
dc.genrejournal articlesen_US
dc.identifierdoi:10.13016/m2eb90-frio
dc.identifier.citationAsk TF, Kullman K, Sütterlin S, Knox BJ, Engel D and Lugo RG (2023) A 3D mixed reality visualization of network topology and activity results in better dyadic cyber team communication and cyber situational awareness. Front. Big Data 6:1042783. doi: 10.3389/fdata.2023.1042783
dc.identifier.urihttps://doi.org/10.3389/fdata.2023.1042783
dc.identifier.urihttp://hdl.handle.net/11603/26146
dc.language.isoen_USen_US
dc.publisherFrontier
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Center for Space Sciences and Technology (CSST) / Center for Research and Exploration in Space Sciences & Technology II (CRSST II)
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.titleA 3D Mixed Reality Visualization of Network Topology and Activity Results in Better Dyadic Cyber Team Communication and Cyber Situational Awarenessen_US
dc.typeTexten_US
dcterms.creatorhttps://orcid.org/0000-0001-9480-0583en_US
dcterms.creatorhttps://orcid.org/0000-0003-2838-0140en_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fdata-06-1042783.pdf
Size:
3.13 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: