Trend Drift Discovery for Individual Highway Drivers through Ensemble Learning

dc.contributor.authorDing, Weilong
dc.contributor.authorWang, Zhe
dc.contributor.authorWang, Jianwu
dc.contributor.authorHan, Yanbo
dc.date.accessioned2022-09-29T14:51:31Z
dc.date.available2022-09-29T14:51:31Z
dc.descriptionUrbComp2020, KDD 2020 workshop, August 23–27, 2020, San Diego, California USA
dc.description.abstractInter-city transportation plays an important role in modern smart cities, and has accumulated massive spatio-temporal data from various sensors in IoT (Internet of things). Current travel characteristics and future trends of highway traffic are valuable for traffic guidance and personalized service. As a routine domain analysis, trend drift discovery for highway drivers faces challenges in processing efficiency and predictive accuracy. Sensitive privacy of business data has to be considered, executive latency on huge data is hard to guarantee, and correlation among spatiotemporal characteristics cannot be fully employed. In this paper, a travel-characteristic based method is proposed to discover the potential drift of payment identity for individual highway drivers. Considering time, space, subjective preference and objective property, monthly travel characteristics are modeled on toll data from highway toll stations, and predictive error for those trends can be reduced dramatically through gradient boosting classification technology. With real-world data of one Chinese provincial highway, extensive experiments show that our method has second-level in executive latency with more than 85% F1-score for predictive accuracy.en_US
dc.description.urihttp://urban.cs.wpi.edu/urbcomp2020/file/06.pdfen_US
dc.format.extent8 pagesen_US
dc.genreconference papers and proceedingsen_US
dc.genrepreprintsen_US
dc.identifierdoi:10.13016/m2ueyg-xxwi
dc.identifier.urihttp://hdl.handle.net/11603/25925
dc.language.isoen_USen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Information Systems Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.en_US
dc.subjectUMBC Big Data Analytics Laben_US
dc.titleTrend Drift Discovery for Individual Highway Drivers through Ensemble Learningen_US
dc.title.alternativeTrend Drift Discovery for Individual Highway Drivers through Ensemble Learning
dc.typeTexten_US
dcterms.creatorhttps://orcid.org/0000-0002-9933-1170en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
06.pdf
Size:
349.06 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: