Exploration into the origins and mobilization of di-hydrofolate reductase genes and the emergence of clinical resistance to trimethoprim

dc.contributor.authorSánchez-Osuna, Miquel
dc.contributor.authorCortés, Pilar
dc.contributor.authorLlagostera, Montserrat
dc.contributor.authorBarbé, Jordi
dc.contributor.authorErill, Ivan
dc.date.accessioned2020-11-04T19:31:24Z
dc.date.available2020-11-04T19:31:24Z
dc.date.issued2020-09-24
dc.description.abstractTrimethoprim is a synthetic antibacterial agent that targets folate biosynthesis by competitively binding to the di-hydrofolate reductase enzyme (DHFR). Trimethoprim is often administered synergistically with sulfonamide, another chemotherapeutic agent targeting the di-hydropteroate synthase (DHPS) enzyme in the same pathway. Clinical resistance to both drugs is widespread and mediated by enzyme variants capable of performing their biological function without binding to these drugs. These mutant enzymes were assumed to have arisen after the discovery of these synthetic drugs, but recent work has shown that genes conferring resistance to sulfonamide were present in the bacterial pangenome millions of years ago. Here, we apply phylogenetics and comparative genomics methods to study the largest family of mobile trimethoprim-resistance genes (dfrA). We show that most of the dfrA genes identified to date map to two large clades that likely arose from independent mobilization events. In contrast to sulfonamide resistance (sul) genes, we find evidence of recurrent mobilization in dfrA genes. Phylogenetic evidence allows us to identify novel dfrA genes in the emerging pathogen Acinetobacter baumannii, and we confirm their resistance phenotype in vitro. We also identify a cluster of dfrA homologues in cryptic plasmid and phage genomes, but we show that these enzymes do not confer resistance to trimethoprim. Our methods also allow us to pinpoint the chromosomal origin of previously reported dfrA genes, and we show that many of these ancient chromosomal genes also confer resistance to trimethoprim. Our work reveals that trimethoprim resistance predated the clinical use of this chemotherapeutic agent, but that novel mutations have likely also arisen and become mobilized following its widespread use within and outside the clinic. Hence, this work confirms that resistance to novel drugs may already be present in the bacterial pangenome, and stresses the importance of rapid mobilization as a fundamental element in the emergence and global spread of resistance determinants.en_US
dc.description.sponsorshipThe authors wish to thank Joan Ruiz and Susana Escribano for their technical support during some of the experimental procedures, as well as Ángela Martínez-Mateos for her continued support. The authors also express their gratitude to Dr Marc Valls for kindly providing the R. solanacearum GMI1000 strain. This work was supported by grant BIO2016-77011-R from the Spanish Ministerio de Economia y Competitividad to J.B. M.S.-O. was the recipient of a predoctoral fellowship from the Ministerio de Educación, Cultura y Deporte de España.en_US
dc.description.urihttps://www.microbiologyresearch.org/content/journal/mgen/10.1099/mgen.0.000440?crawler=trueen_US
dc.format.extent13 pagesen_US
dc.genrejournal articlesen_US
dc.identifierdoi:10.13016/m2defl-pcxj
dc.identifier.citationMiquel Sánchez-Osuna et al., Exploration into the origins and mobilization of di-hydrofolate reductase genes and the emergence of clinical resistance to trimethoprim, , Microbial Genomics, doi: https://doi.org/10.1099/mgen.0.000440en_US
dc.identifier.urihttps://doi.org/10.1099/mgen.0.000440
dc.identifier.urihttp://hdl.handle.net/11603/20020
dc.language.isoen_USen_US
dc.publisherMicrobiology Societyen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Biological Sciences Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.rightsAttribution 4.0 International*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.ast*
dc.titleExploration into the origins and mobilization of di-hydrofolate reductase genes and the emergence of clinical resistance to trimethoprimen_US
dc.typeTexten_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mgen000440.pdf
Size:
4.69 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: