A Study of Machine Learning Models’ Ability to Predict Coronary Artery Disease Progression
| dc.contributor.author | Ali, Akbar | |
| dc.contributor.author | Singh, Davinder | |
| dc.contributor.author | Yousuf, Muhammad Ali | |
| dc.contributor.author | Thompson, Ellen | |
| dc.date.accessioned | 2026-01-06T20:52:04Z | |
| dc.date.issued | 2025-04 | |
| dc.format.extent | 1 page | |
| dc.genre | posters | |
| dc.identifier | doi:10.13016/m2wakb-2ke7 | |
| dc.identifier.uri | http://hdl.handle.net/11603/41412 | |
| dc.language.iso | en | |
| dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
| dc.relation.ispartof | UMBC Faculty Collection | |
| dc.relation.ispartof | UMBC Computer Science and Electrical Engineering Department | |
| dc.rights | This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author. | |
| dc.subject | UMBC Lab for Healthcare Engineering | |
| dc.subject | Coronary Artery Disease (CAD) | |
| dc.subject | open-source machine learning (ML) model | |
| dc.subject | Predict Coronary Artery Disease Progression | |
| dc.title | A Study of Machine Learning Models’ Ability to Predict Coronary Artery Disease Progression | |
| dc.type | Text | |
| dcterms.creator | https://orcid.org/0009-0005-7213-7262 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Ali_AStudyofGenerativeAIModelsAbilitytoPredictCoronaryArteryDiseaseProgression.pdf
- Size:
- 271.07 KB
- Format:
- Adobe Portable Document Format
