On Detecting False Data Injection with Limited Network Information using Statistical Techniques

dc.contributor.authorKhanna, Kush
dc.contributor.authorBose, Ranjan
dc.contributor.authorJoshi, Anupam
dc.date.accessioned2018-10-18T13:45:51Z
dc.date.available2018-10-18T13:45:51Z
dc.date.issued2018-02-01
dc.description2017 IEEE Power & Energy Society General Meetingen
dc.description.abstractCyber-attacks poses a serious threat to power system operation. False data injection attack (FDIA) is one such severe threat, if wisely constructed, can cause flawed estimation of power system states, thereby, leading to uneconomical and unsecured operation of power system. In recent years many methods are proposed to secure the smart grid against malicious cyber-events by protecting certain critical measurement sensors. However, making a system completely hack-proof is rather idealistic. In this paper, in addition to the research carried out in this space, we present a new Log transformation based method to detect the FDIA in real time with high probability. The detection probability of the proposed scheme is compared with existing method using IEEE 14 bus system.en
dc.description.urihttps://ieeexplore.ieee.org/document/8273902en
dc.format.extent5 pagesen
dc.genreconference paper pre-printen
dc.identifierdoi:10.13016/M2000041X
dc.identifier.citationKush Khanna, Ranjan Bose, Anupam Joshi, On Detecting False Data Injection with Limited Network Information using Statistical Techniques, 2017 IEEE Power & Energy Society General Meeting ,01 Feb 2018, , DOI: 10.1109/PESGM.2017.8273902 .en
dc.identifier.uri10.1109/PESGM.2017.8273902
dc.identifier.urihttp://hdl.handle.net/11603/11598
dc.language.isoenen
dc.publisherIEEEen
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.rights© 2017 IEEE
dc.subjectCyber securityen
dc.subjectfalse data injectionen
dc.subjectKullback- Leibler distanceen
dc.subjectlog transformationen
dc.subjectsmart griden
dc.subjectTime measurementen
dc.subjectIEEE 14 bus systemen
dc.subjectnetwork informationen
dc.subjectcritical measurement sensorsen
dc.subjectUMBC Ebiquity Research Groupen
dc.titleOn Detecting False Data Injection with Limited Network Information using Statistical Techniquesen
dc.typeTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
867.pd.pdf
Size:
181.94 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: