On Detecting False Data Injection with Limited Network Information using Statistical Techniques

dc.contributor.authorKhanna, Kush
dc.contributor.authorBose, Ranjan
dc.contributor.authorJoshi, Anupam
dc.date.accessioned2018-10-18T13:45:51Z
dc.date.available2018-10-18T13:45:51Z
dc.date.issued2018-02-01
dc.description2017 IEEE Power & Energy Society General Meetingen_US
dc.description.abstractCyber-attacks poses a serious threat to power system operation. False data injection attack (FDIA) is one such severe threat, if wisely constructed, can cause flawed estimation of power system states, thereby, leading to uneconomical and unsecured operation of power system. In recent years many methods are proposed to secure the smart grid against malicious cyber-events by protecting certain critical measurement sensors. However, making a system completely hack-proof is rather idealistic. In this paper, in addition to the research carried out in this space, we present a new Log transformation based method to detect the FDIA in real time with high probability. The detection probability of the proposed scheme is compared with existing method using IEEE 14 bus system.en_US
dc.description.urihttps://ieeexplore.ieee.org/document/8273902en_US
dc.format.extent5 pagesen_US
dc.genreconference paper pre-printen_US
dc.identifierdoi:10.13016/M2000041X
dc.identifier.citationKush Khanna, Ranjan Bose, Anupam Joshi, On Detecting False Data Injection with Limited Network Information using Statistical Techniques, 2017 IEEE Power & Energy Society General Meeting ,01 Feb 2018, , DOI: 10.1109/PESGM.2017.8273902 .en_US
dc.identifier.uri10.1109/PESGM.2017.8273902
dc.identifier.urihttp://hdl.handle.net/11603/11598
dc.language.isoen_USen_US
dc.publisherIEEEen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.rights© 2017 IEEE
dc.subjectCyber securityen_US
dc.subjectfalse data injectionen_US
dc.subjectKullback- Leibler distanceen_US
dc.subjectlog transformationen_US
dc.subjectsmart griden_US
dc.subjectTime measurementen_US
dc.subjectIEEE 14 bus systemen_US
dc.subjectnetwork informationen_US
dc.subjectcritical measurement sensorsen_US
dc.subjectUMBC Ebiquity Research Groupen_US
dc.titleOn Detecting False Data Injection with Limited Network Information using Statistical Techniquesen_US
dc.typeTexten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
867.pd.pdf
Size:
181.94 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: