LingVarBench: Benchmarking LLMs on Entity Recognitions and Linguistic Verbalization Patterns in Phone-Call Transcripts

Author/Creator ORCID

Department

Program

Citation of Original Publication

Rights

Attribution 4.0 International

Abstract

We study structured entity extraction from phone-call transcripts in customer-support and healthcare settings, where annotation is costly, and data access is limited by privacy and consent. Existing methods degrade under disfluencies, interruptions, and speaker overlap, yet large real-call corpora are rarely shareable. We introduce LingVarBench, a benchmark and semantic synthetic data generation pipeline that generates linguistically varied training data via (1) LLM-sampled entity values, (2) curated linguistic verbalization patterns covering diverse disfluencies and entity-specific readout styles, and (3) a value-transcript consistency filter. Using this dataset, DSPy's SIMBA automatically synthesizes and optimizes extraction prompts, reducing manual prompt engineering and targeting robustness to verbal variation. On real customer transcripts, prompts optimized solely on LingVarBench outperform zero-shot baselines and match or closely approach human-tuned prompts for structured entities such as ZIP code, date of birth, and name (F1 approximately 94-95 percent). For subjective questionnaire items, optimized prompts substantially improve over zero-shot performance and approach human-tuned prompts. LingVarBench offers a practical and cost-efficient path to deployment in a direct-answer setting, with real annotations later enabling additional refinement.