Nuclear introns help unravel the diversification history of the Australo-Pacific Petroica robins

Department

Program

Citation of Original Publication

Kearns, Anna M., John F. Malloy, Matthias K. Gobbert, et al. “Nuclear Introns Help Unravel the Diversification History of the Australo-Pacific Petroica Robins.” Molecular Phylogenetics and Evolution 131 (February 2019): 48–54. https://doi.org/10.1016/j.ympev.2018.10.024.

Rights

This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
Public Domain

Abstract

Australo-Pacific Petroica robins are known for their striking variability in sexual plumage coloration. Molecular studies in recent years have revised the taxonomy of species and subspecies boundaries across the southwest Pacific and New Guinea. However, these studies have not been able to resolve phylogenetic relationships within Petroica owing to limited sampling of the nuclear genome. Here, we sequence five nuclear introns across all species for which fresh tissue was available. Nuclear loci offer support for major geographic lineages that were first inferred from mtDNA. We find almost no shared nuclear alleles between currently recognized species within the New Zealand and Australian lineages, whereas the Pacific robin radiation has many shared alleles. Multilocus coalescent species trees based on nuclear loci support a sister relationship between the Australian lineage and the Pacific robin radiation—a node that is poorly supported by mtDNA. We also find discordance in support for a sister relationship between the similarly plumaged Rose Robin (P. rosea) and Pink Robin (P. rodinogaster). Our nuclear data complement previous mtDNA studies in suggesting that the phenotypically cryptic eastern and western populations of Australia’s Scarlet Robin (P. boodang) are genetically distinct lineages at the early stages of divergence and speciation.