Ebiquity: Paraphrase and Semantic Similarity in Twitter using Skipgram

dc.contributor.authorSatyapanich, Taneeya W.
dc.contributor.authorGao, Hang W.
dc.contributor.authorFinin, Tim
dc.date.accessioned2018-11-01T15:46:09Z
dc.date.available2018-11-01T15:46:09Z
dc.date.issued2015-06-04
dc.descriptionProceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015)en_US
dc.description.abstractWe describe the system we developed to participate in SemEval 2015 Task 1, Paraphrase and Semantic Similarity in Twitter. We create similarity vectors from two-skip trigrams of preprocessed tweets and measure their semantic similarity using our UMBC-STS system. We submitted two runs. The best result is ranked eleventh out of eighteen teams with F1 score of 0.599.en_US
dc.description.sponsorshipPartial support for this research was provided by grants from the National Science Foundation (1228198 and 1250627) and a grant from the Maryland Industrial Partnerships program.en_US
dc.description.urihttps://ebiquity.umbc.edu/paper/html/id/693/Ebiquity-Paraphrase-and-Semantic-Similarity-in-Twitter-using-Skipgramen_US
dc.format.extent5 pagesen_US
dc.genreconference papers and proceedings pre-printen_US
dc.identifierdoi:10.13016/M2XP6V72N
dc.identifier.citationTaneeya W. Satyapanich, Hang W. Gao, and Tim Finin, Ebiquity: Paraphrase and Semantic Similarity in Twitter using Skipgram, Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 51–55.https://ebiquity.umbc.edu/paper/html/id/693/Ebiquity-Paraphrase-and-Semantic-Similarity-in-Twitter-using-Skipgramen_US
dc.identifier.urihttp://hdl.handle.net/11603/11821
dc.language.isoen_USen_US
dc.publisherAssociation for Computational Linguisticsen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Student Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.subjectParaphraseen_US
dc.subjectSemanticen_US
dc.subjectTwitteren_US
dc.subjectSkipgramen_US
dc.subjectUMBC Ebiquity Research Groupen_US
dc.titleEbiquity: Paraphrase and Semantic Similarity in Twitter using Skipgramen_US
dc.typeTexten_US

Files

License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: