Linearizability of flows by embeddings

dc.contributor.authorKvalheim, Matthew D.
dc.contributor.authorArathoon, Philip
dc.date.accessioned2023-10-25T14:19:34Z
dc.date.available2023-10-25T14:19:34Z
dc.date.issued2024-07-30
dc.description.abstractWe consider the problem of determining the class of continuous-time dynamical systems that can be globally linearized in the sense of admitting an embedding into a linear flow on a finite-dimensional Euclidean space. We obtain necessary and sufficient conditions for the existence of linearizing embeddings of compact invariant sets and basins of attraction. Our results reveal relationships between linearizability, symmetry, topology, and invariant manifold theory that impose fundamental limitations on algorithms from the "applied Koopman operator theory" literature.en
dc.description.urihttps://arxiv.org/abs/2305.18288en
dc.format.extent20 pagesen
dc.genrejournal articlesen
dc.genrepreprintsen
dc.identifierdoi:10.13016/m2u3nv-kkny
dc.identifier.urihttps://doi.org/10.48550/arXiv.2305.18288
dc.identifier.urihttp://hdl.handle.net/11603/30369
dc.language.isoenen
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Mathematics Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.en
dc.titleLinearizability of flows by embeddingsen
dc.typeTexten
dcterms.creatorhttps://orcid.org/0000-0002-2662-6760en

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2305.18288v6.pdf
Size:
949.77 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: