Sub-wavelength optical lattice in 2D materials
Links to Files
Collections
Author/Creator ORCID
Date
Type of Work
Department
Program
Citation of Original Publication
Sarkar, Supratik, Mahmoud Jalali Mehrabad, Daniel G. Suárez-Forero, et al. “Sub-Wavelength Optical Lattice in 2D Materials.” Science Advances 11, no. 13 (2025): eadv2023. https://doi.org/10.1126/sciadv.adv2023.
Rights
This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
Public Domain
Public Domain
Abstract
Recently, light-matter interaction has been vastly expanded as a control tool for inducing and enhancing many emergent nonequilibrium phenomena. However, conventional schemes for exploring such light-induced phenomena rely on uniform and diffraction-limited free-space optics, which limits the spatial resolution and the efficiency of light-matter interaction. Here, we overcome these challenges using metasurface plasmon polaritons (MPPs) to form a sub-wavelength optical lattice. Specifically, we report a “nonlocal” pump-probe scheme where MPPs are excited to induce a spatially modulated AC Stark shift for excitons in a monolayer of MoSe₂, several microns away from the illumination spot. We identify nearly two orders of magnitude reduction for the required modulation power compared to the free-space optical illumination counterpart. Moreover, we demonstrate a broadening of the excitons’ linewidth as a robust signature of MPP-induced periodic sub-diffraction modulation. Our results will allow exploring power-efficient light-induced lattice phenomena below the diffraction limit in active chip-compatible MPP architectures.
