Multiple linear regression and thermodynamic fluctuations are equivalent for computing thermodynamic derivatives from molecular simulation

dc.contributor.authorRahbari, Ahmadreza
dc.contributor.authorJosephson, Tyler R.
dc.contributor.authorSun, Yangzesheng
dc.contributor.authorMoultos, Othonas A.
dc.contributor.authorDubbeldam, David
dc.contributor.authorSiepmann, J. Ilja
dc.contributor.authorVlugt, Thijs J.H.
dc.date.accessioned2021-03-09T18:53:06Z
dc.date.available2021-03-09T18:53:06Z
dc.date.issued2020-08-11
dc.description.abstractPartial molar properties are of fundamental importance for understanding properties of non-ideal mixtures. Josephson and co-workers (Mol. Phys. 2019, 117, 3589–3602) used least squares multiple linear regression to obtain partial molar properties in open constant-pressure ensembles. Assuming composition-independent partial molar properties for the narrow composition range encountered throughout simulation trajectories, we rigorously prove the equivalence of two approaches for computing thermodynamic derivatives in open ensembles of an n-component system: (1) multiple linear regression, and (2) thermodynamic fluctuations. Multiple linear regression provides a conceptually simple and computationally efficient way of computing thermodynamic derivatives for multicomponent systems. We show that in the reaction ensemble, the reaction enthalpy can be computed directly by simple multiple linear regression of the enthalpy as a function of the number of reactant molecules. Non-linear regression and a Gaussian process model taking into account the compositional dependence of partial molar properties further support that multiple linear regression captures the correct physics.en_US
dc.description.sponsorshipThis work was supported by NWO Exacte Wetenschappen (Physical Sciences) for the use of supercomputer facilities, with financial support from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organization for Scientific Research, NWO). TJHV acknowledges NWO-CW for a VICI grant. This work was also supported by the Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, under Award DE-FG02-17ER16362 (TJR, YS, and JIS ). Computational resources from the Minnesota Supercomputing Institute are also gratefully acknowledged.en_US
dc.description.urihttps://www.sciencedirect.com/science/article/pii/S0378381220303332#!en_US
dc.format.extent8 pagesen_US
dc.genrejournal articlesen_US
dc.identifierdoi:10.13016/m2t2mw-yefq
dc.identifier.citationRahbari, Ahmadreza; Josephson, Tyler R.; Sun, Yangzesheng; Moultos, Othonas A.; Dubbeldam, David; Siepmann, J. Ilja; Vlugt, Thijs J.H.; Multiple linear regression and thermodynamic fluctuations are equivalent for computing thermodynamic derivatives from molecular simulation; Fluid Phase Equilibria, Volume 523, 15 November 2020; https://www.sciencedirect.com/science/article/pii/S0378381220303332#!en_US
dc.identifier.urihttps://doi.org/10.1016/j.fluid.2020.112785
dc.identifier.urihttp://hdl.handle.net/11603/21126
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Chemical, Biochemical & Environmental Engineering Department Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.rightsAttribution 4.0 International (CC BY 4.0)*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.titleMultiple linear regression and thermodynamic fluctuations are equivalent for computing thermodynamic derivatives from molecular simulationen_US
dc.typeTexten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0378381220303332-main.pdf
Size:
425.91 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: