Extended eigenvalues and the Volterra operator

dc.contributor.authorBiswas, Animikh
dc.contributor.authorLambert, Alan
dc.contributor.authorPetrovic, Srdjan
dc.date.accessioned2024-11-14T15:18:42Z
dc.date.available2024-11-14T15:18:42Z
dc.date.issued2003-02-26
dc.description.abstractIn this paper we consider the integral Volterra operator on the space L²(0,1). We say that a complex number λ is an extended eigenvalue of V if there exists a nonzero operator X satisfying the equation XV=λVX. We show that the set of extended eigenvalues of V is precisely the interval (0, ∞) and the corresponding eigenvectors may be chosen to be integral operators as well.
dc.description.sponsorshipThe third author was supported in part by the FRACASF grant from the Western Michigan University.
dc.description.urihttps://www.cambridge.org/core/journals/glasgow-mathematical-journal/article/extended-eigenvalues-and-the-volterra-operator/15E05076D3849E20B3F1CF5FB58E95D1
dc.format.extent21 pages
dc.genrejournal articles
dc.genrepreprints
dc.identifierdoi:10.13016/m2va32-ogwu
dc.identifier.citationBiswas, Animikh, Alan Lambert, and Srdjan Petrovic. “Extended Eigenvalues and the Volterra Operator.” Glasgow Mathematical Journal 44, no. 3 (September 2002): 521–34. https://doi.org/10.1017/S001708950203015X.
dc.identifier.urihttps://doi.org/10.1017/S001708950203015X
dc.identifier.urihttp://hdl.handle.net/11603/36953
dc.language.isoen_US
dc.publisherCambridge University Press
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Mathematics and Statistics Department
dc.rights@2002 Glasgow Mathematical Journal Trust. This work has been accepted for publication.
dc.titleExtended eigenvalues and the Volterra operator
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0001-8594-0568

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Extended_eigenvalues_and_the_Volterra_op.pdf
Size:
596.67 KB
Format:
Adobe Portable Document Format