Extended eigenvalues and the Volterra operator
dc.contributor.author | Biswas, Animikh | |
dc.contributor.author | Lambert, Alan | |
dc.contributor.author | Petrovic, Srdjan | |
dc.date.accessioned | 2024-11-14T15:18:42Z | |
dc.date.available | 2024-11-14T15:18:42Z | |
dc.date.issued | 2003-02-26 | |
dc.description.abstract | In this paper we consider the integral Volterra operator on the space L²(0,1). We say that a complex number λ is an extended eigenvalue of V if there exists a nonzero operator X satisfying the equation XV=λVX. We show that the set of extended eigenvalues of V is precisely the interval (0, ∞) and the corresponding eigenvectors may be chosen to be integral operators as well. | |
dc.description.sponsorship | The third author was supported in part by the FRACASF grant from the Western Michigan University. | |
dc.description.uri | https://www.cambridge.org/core/journals/glasgow-mathematical-journal/article/extended-eigenvalues-and-the-volterra-operator/15E05076D3849E20B3F1CF5FB58E95D1 | |
dc.format.extent | 21 pages | |
dc.genre | journal articles | |
dc.genre | preprints | |
dc.identifier | doi:10.13016/m2va32-ogwu | |
dc.identifier.citation | Biswas, Animikh, Alan Lambert, and Srdjan Petrovic. “Extended Eigenvalues and the Volterra Operator.” Glasgow Mathematical Journal 44, no. 3 (September 2002): 521–34. https://doi.org/10.1017/S001708950203015X. | |
dc.identifier.uri | https://doi.org/10.1017/S001708950203015X | |
dc.identifier.uri | http://hdl.handle.net/11603/36953 | |
dc.language.iso | en_US | |
dc.publisher | Cambridge University Press | |
dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
dc.relation.ispartof | UMBC Mathematics and Statistics Department | |
dc.rights | @2002 Glasgow Mathematical Journal Trust. This work has been accepted for publication. | |
dc.title | Extended eigenvalues and the Volterra operator | |
dc.type | Text | |
dcterms.creator | https://orcid.org/0000-0001-8594-0568 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Extended_eigenvalues_and_the_Volterra_op.pdf
- Size:
- 596.67 KB
- Format:
- Adobe Portable Document Format